
ALMA, an international astronomy facility, is a partnership of ESO (representing its member states), NSF (USA) and NINS

(Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the

Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

ALMA Science Pipeline User’s Guide for
CASA 4.7.2
Interferometric and Single-Dish Processing

Doc 4.13, ver. 2 | July, 2017

For further information or to comment on this document, please contact your regional Helpdesk through the ALMA User

Portal at www.almascience.org. Helpdesk tickets will be directed to the appropriate ALMA Regional Center at ESO,

NAOJ or NRAO.

Version Date Editors

3.13v1.0 CASA 4.5.1 January 2016 Pipeline Team

4.13v1.0 CASA 4.7.0 October 2016 Pipeline Team

4.13v2.0 CASA 4.7.2 July 2017 Pipeline Team

In publications, please refer to this document as:
ALMA Pipeline Team, 2017, ALMA Science Pipeline User’s Guide, ALMA Doc 4.13v2.0

	Table	of	contents	
1	 The	ALMA	Science	Pipeline	...	4	

1.1	 Purpose	of	this	document	...	4	
1.2	 Pipeline	Overview	and	nomenclature	..	4	

2	 What’s	New	in	Cycle	4	..	5	
2.1	 What’s	New	for	the	start	of	Cycle	4	(October	2016)	...	5	
2.2	 What’s	New	for	the	Cycle	4	“patch”	(April	2017)..	5	
2.3	 Current	Known	Limitations	of	the	Cycle	4	Pipeline	...	6	

3	 Pipeline	Versions	&	Documentation	...	8	
3.1	 Obtaining	the	Pipeline	...	8	
3.2	 Pipeline-related	Documentation	..	8	
3.3	 Pipeline	&	CASA	Versions	..	8	
3.4	 Pipeline	and	CASA	tasks	..	8	

4	 Data	Processing	Files	..	9	
4.1	 Archived	scripts	...	9	
4.2	 Pipeline	“Helper”	text	files	..	10	
4.3	 The	Pipeline	processing	script:	casa_pipescript.py	...	10	

4.3.1	 Format	of	casa_pipescript.py	...	10	
4.3.2	 Results	from	running	the	single	dish	casa_pipescript.py	...	13	
4.3.3	 Results	from	running	the	interferometric	casa_pipescript.py	...	13	

4.4	 CASA	equivalent	commands	file:	casa_commands.log	...	14	

5	 Modifying	a	Pipeline	Run	using	casa_pipescript.py	...	14	
5.1	 Pipeline	re-processing	considerations	..	14	
5.2	 Preparing	to	run	casa_pipescript.py	..	14	
5.3	 Modifying	Calibration	Commands	...	15	
5.4	 Modifying	IF	Pipeline	Imaging	Commands	...	15	
5.5	 Manual	imaging	after	running	casa_pipescript.py	...	16	

5.5.1	 SD	Data	...	16	
5.5.2	 IF	Data	..	17	

5.6	 Manipulating	the	Pipeline	Context	..	17	

6	 Description	of	Pipeline	“Helper”	Text	Files	..	17	
6.1	 IF	Pipeline:	flux.csv	..	18	
6.2	 SD	Pipeline:	jyperk.csv	...	18	
6.3	 IF	Pipeline:	antennapos.csv	...	19	
6.4	 Both	IF	&	SD	Pipeline:	uid*flagtemplate.txt	...	20	
6.5	 IF	Imaging	Pipeline:	uid*flagtargetstemplate.txt	...	20	
6.6	 IF	Imaging	Pipeline:	cont.dat	...	21	

7	 The	Pipeline	WebLog	..	22	
7.1	 Overview	...	22	
7.2	 Navigation	...	23	
7.3	 Home	Page	..	23	

7.3.1	 Measurement	set	Overview	pages	...	24	

	

	

2	

7.4	 By	Topic	Summary	Page	..	25	
7.5	 By	Task	Summary	Page	..	25	

7.5.1	 CASA	logs	and	scripts	..	26	
7.6	 Task	Pages	...	26	

7.6.1	 Task	sub-pages	and	plot	filtering	..	28	
7.7	 WebLog	Quality	Assessment	(QA)	Scoring	...	30	

7.7.1	 Interferometric	Pipeline	QA	Scores	..	30	
7.7.2	 Single-Dish	Pipeline	QA	scores	...	32	

8	 The	“By	task”	WebLog	for	Interferometric	Data	..	33	
8.1	 hifa_importdata	..	33	
8.2	 hifa_flagdata	...	33	
8.3	 hifa_fluxcalflag	..	33	
8.4	 hif_rawflagchans	...	33	
8.5	 hif_refant	..	34	
8.6	 hifa_tsyscal	...	35	
8.7	 hifa_tsysflag	..	35	
8.8	 hifa_antpos	...	36	
8.9	 hifa_wvrgcalflag	..	37	
8.10	 hif_lowgainflag	..	37	
8.11	 hif_gainflag	...	37	
8.12	 hif_setjy	..	38	
8.13	 hifa_bandpass	...	38	
8.14	 hifa_spwphaseup	..	38	
8.15	 hifa_gfluxscale	..	38	
8.16	 hifa_timegaincal	..	38	
8.17	 hif_applycal	...	38	
8.18	 hif_makeimlist:	Set-up	parameters	for	calibrator	images	..	39	
8.19	 hif_makeimages:	Make	calibrator	images	..	39	
8.20	 hif_checkproductsize:	Mitigation	to	avoid	overly	long	runs	...	39	
8.21	 hif_exportdata	..	41	
8.22	 hif_mstransform	...	41	
8.23	 hifa_flagtargets	...	41	
8.24	 hif_makeimlist:	Set-up	parameters	for	target	per-spw	continuum	imaging	41	
8.25	 hif_findcont	...	41	
8.26	 hif_uvcontfit	...	42	
8.27	 hif_uvsub	..	42	
8.28	 hif_makeimages:	Make	target	per-spw	continuum	images	..	42	
8.29	 hif_makeimlist:	Set-up	parameters	for	target	aggregate	continuum	images	44	
8.30	 hif_makeimages:	Make	target	aggregate	continuum	images	...	44	
8.31	 hif_makeimlist:	Set-up	image	parameters	for	target	cube	imaging	44	
8.32	 hif_makeimages:	Make	target	cubes	...	44	
8.33	 hif_exportdata	..	45	

9	 The	“By	task”	WebLog	for	Single-Dish	Data	..	46	
9.1	 hsd_importdata	...	46	
9.2	 hsd_flagdata	...	46	

	

	

3	

9.3	 hifa_tsyscal	...	46	
9.4	 hifa_tsysflag	..	46	
9.5	 hsd_skycal	...	47	
9.6	 hsd_k2jycal	...	47	
9.7	 hsd_applycal	...	47	
9.8	 hsd_baseline	...	47	
9.9	 hsd_blflag	...	50	
9.10	 hsd_imaging	..	50	

	

	

	

4	

1 The ALMA Science Pipeline

1.1 Purpose of this document
This document describes how to obtain the ALMA Pipeline, how to use it to calibrate and image
ALMA interferometric (IF) and single-dish (SD) data, and a description of the Pipeline WebLog
(collection of web pages with diagnostic information describing the pipeline run). Since
interferometric and single-dish data are calibrated and imaged using different procedures and
diagnostics, their recalibration procedures and WebLogs are described separately.

This document is applicable for the Cycle 4 “patch” version of the ALMA Pipeline that is included
in CASA 4.7.2, deployed for use in ALMA Operations in April 2017. This version is labeled as
Pipeline Version r39732 (Pipeline-Cycle4-R2-B) CASA Version 4.7.2 r39762 in the WebLog.

1.2 Pipeline Overview and nomenclature

The ALMA Science Pipeline is used for the automated calibration and imaging of ALMA
interferometric and single-dish data. ALMA Interferometric data refers to observations obtained
with either the ALMA 12-m Array or 7-m Array, while single-dish data refers to observations
obtained with the 12-m dishes of the ALMA Total Power Array.

The Pipeline consists of modular calibration and imaging tasks within the Common Astronomy
Software Applications (CASA) data reduction package that are selected and put together in a
specific order based on standard prescriptions or recipes. The ALMA pipeline recipes cover the
processing requirements of ALMA “standard” interferometric and single-dish observing modes.
Datasets resulting from ALMA “non-standard” observing modes are, as a rule, processed
outside the pipeline, using manually modified CASA scripts. The standard and non-standard
observing modes are defined in the Proposer’s Guide for each ALMA proposal cycle. The
science pipeline is not yet commissioned for the combination of datasets obtained from different
array components (separate IF array observations, or IF plus SD combinations).

The pipeline operates on a completed dataset that is comprised of all of the quality assured
individual executions that result from completing a Scheduling Block (SB). An individual SB
execution results in a dataset referred to as an ASDM (for ALMA Science Data Model), and the
collection of ASDMs from a single SB are collected into a data structure called a Member
Observing Unit Sets (MOUS), which is the data unit that the pipeline operates on. The pipeline
produces the following: calibration products for each ASDM (including calibration and flagging
files and tables); imaging products (FITS images) made from all ASDMs (although not
necessarily for all science targets); informative logs and scripts; and a WebLog consisting of a
collection of webpages with diagnostic messages, tables, figures, and “Quality Assurance" (QA)
scores. These products are reviewed as part of the ALMA Quality Assurance process, and, if
satisfactory, are stored into the ALMA Science Archive. See the ALMA Technical Handbook for
details on the ALMA data structures, quality assurance criteria, and archiving system.

The Pipeline is data-driven: i.e. the characteristics of each dataset drive the calibration and
imaging strategy (the Pipeline Heuristics). During the Pipeline run, critical information (for
example, which calibration tables are used) are stored in the pipeline Context. Both the
Heuristics and the Context are implemented as python classes.

In order to determine if the Pipeline was used in the processing of an ALMA dataset, please look
at the WebLog or consult the README file in the data delivery package. Some projects may
contain a mix of both manually and Pipeline-calibrated data.

	

	

5	

2 What’s New in Cycle 4

2.1 What’s New for the start of Cycle 4 (October 2016)

New features of the original Cycle 4 pipeline (released with CASA 4.7.0) include:

• The interferometric calibration pipeline has a low signal-to-noise heuristic task
(hifa_spwphaseup) that calculates the temporal phase variations by combining
spectral windows (spw).

• The Interferometry Pipeline includes science target imaging, imaging of “check sources”
in the calibrator imaging stage, and improved calibrator quality assurance scores.

• The Single-dish Pipeline was refactored to use Measurement Set (MS) rather than
scantable format.

• There are improved defaults for the hif_gainflag task.

• Files previously exported as .tar.gz are now exported as .tgz.

2.2 What’s New for the Cycle 4 “patch” (April 2017)

The primary new functionality of the Cycle 4 pipeline patch (released with CASA 4.7.2) includes:

• Exporting of the imaging products for “check source” calibrators.

• A new Image size mitigation task hif_checkproductsize that reduce the image
product size if it is predicted to be larger than specific limits, implemented with the aim of
keeping the processing time ≤ 3 days when run on a node with 128GB RAM. The
mitigations are to limit channel binning, imaged field of view, number of image pixels per
synthesized beam, and/or number of sources imaged. The default limits for triggering the
mitigation are: cubes estimated to exceed 30 GB; total imaging products estimated to
exceed 400 GB. These limits are a coarse surrogate for processing time.

• Improvements in IF WebLog pages:
§ New per-antenna plots in the applycal “details” page, to help identify the specific

antennas responsible for outlier points.
§ A “next” functionality for reviewing the hif_findcont plots.
§ New table format in the hifa_gfluxcale WebLog page for calibrators that shows

the cataloged values of flux as well as the derived flux values.

• Improvements in SD WebLog pages:
§ New plots for atmospheric transmission added to hsd_baseline, hsd_imaging.
§ Anchors added on the top page of each task.
§ New summary table in hsd_blflag.
§ New source and MS filters in the detail pages of hsd_baseline and hsd_skycal.
§ Online-flagged data points are now shown in gray in TP pointing plots.
§ Image captions added in the navigation plots in hsd_imaging.
§ New per-spw plots in hsd_skycal

• Fixed various bugs that led to errors in hif_findcont, WebLog plots, or because of
odd source names.

	

	

6	

2.3 Current Known Limitations of the Cycle 4 Pipeline

The current (April 2017) Known limitations of the Cycle 4 pipeline include:

• The pipeline is commissioned only for ALMA “standard mode” observations, as defined
in the Proposers Guide for the latest cycle, subject to the additional restrictions listed
below.

• All raw data (ASDMs) run through the pipeline must have complete and properly
formatted binary and metadata. This is not always the case for ASDMs from earlier
ALMA cycles. In particular:
§ The SD pipeline can only be run on data from Cycle 3 or later.
§ The IF pipeline will not work with ALMA Cycle 0 data, or with some Cycle 1 – 2 data.

• Manually calibrated data from Cycles 1 – 3 are likely to have problems if run through the
pipeline.

• The raw data (ASDMs) run through the pipeline should have a “quality assurance level 0”
(QA0) assessment of “QA0 Pass”. Running the pipeline on non-quality assured data
(“QA0 SemiPass” or “QA0 Fail”) is not expected to give sound results and may fail.

• The pipeline assumes that it has access to all of the available RAM on the node where it
is run. If other processes use signifcant amounts of this RAM, the pipeline may fail.

• If the number of files opened by the pipline (which increases with the number of ASDMs
being processed) exceeds the server specification, the pipeline will fail. This limit can
generally be increased using a command like “ulimit –Sn 4096”

Additional limitations of the Interferometric Pipeline are:

• The IF pipeline does not perform flux equalization between the different executions of
multi-epoch observations.

• The IF pipeline can calibrate ephemeris target data, but will not properly image them.

• While the IF pipeline calibration and flagging tasks include low signal-to-noise heuristics,
they will produce poor results if the calibrators are too weak.

• The IF pipeline does not perform automated science target flagging. Template flagging
files (names like uid*_flagtargetstemplate.txt, one per ASDM) are provided for
users to add their own flags; these will be applied during the hifa_flagtargets task if the
pipeline imaging script is re-run.

• In order to increase delivery rates of data to PIs, the archived imaging products may be
binned in frequency, limited in the imaged field of view, and/or restricted to a subset of
sources. Users can make the missing products by making small modifications to the
scripts that are archived with the data.

• The IF imaging pipeline will try to image all field pointings associated with a given source
name. If these are too widely spaced the resulting images will be very large and sparse.
Such poorly formatted “mosaics” should be imaged manually instead.

• The frequency ranges for interferometric continuum identification and subtraction are
done in an automated manner that works well over a very broad range of observing
modes and source properties. In some cases (e.g. hot core line emission, noisy
broadband continuum), it is expected that better results can be obtained by more careful
examination of individual sources and/or spectral windows. If the data are heavily binned
in frequency before this task is run, the results may be compromised.

	

	

7	

• The IF continuum identification task hif_findcont uses various heuristics that may
depend on the amount of available RAM on the cluster node. Running the corresponding
pipeline task (hif_findcont) using a machine with a different amount of RAM than was
used to produce the delivered products may therefore lead to the selection of different
continuum ranges. However, the original products will be reproduced exactly using the
pipeline-provided “cont.dat” file, which also significantly reduces the processing time.

• Science target deconvolution (“cleaning”) is done with a generic mask and shallow
dynamic-range limited clean thresholds, meaning that images with moderate to strong
emission will benefit from more carefully defined masks and deeper cleaning thresholds.

• The IF PL imaging steps use the “effective channel bandwidth” from the raw data file to
calculate the theoretical image sensitivity and hence clean thresholds. This information is
not correctly entered for ALMA data from Cycles 2 and earlier; as a result, the clean
thresholds will be higher than intended when such data is run through the imaging
pipeline.

• The pipeline does not include science target self-calibration. Therefore, the pipeline
imaging products of bright sources will be dynamic range limited.

• The interferometric imaging pipeline commands should work with measurement sets
calibrated outside the pipeline, but this has not been tested extensively and may have
as-yet undetermined failure modes.

Additional limitations of the Single-dish Pipeline are:

• The number and total size of all ASDMs run through the SD pipeline cannot exceed limits
set by the server specification (amounting to 31 GB of raw data for a node with 64 GB of
RAM).

• The SD pipeline does not work properly with ephemeris targets or targets with a high
proper motion (> 200 µas over an execution).

• The SD pipeline does not support single-polarization data.

• The frequency ranges for single dish line identification and spectral baseline subtraction
are done in an automated manner that has been optimized to detect moderate channel
width (wider than 100 channels) emission lines at the center of a spectral window. It is
expected that better results can be obtained by more careful examination of individual
sources and/or spectral windows. The following cases are most strongly affected:
§ Narrow emission lines (less than 100 channels wide), especially in TDM mode.
§ Emission at the edge of a spectral window.
§ Cubes with a “forest” of emission lines.

• The SD pipeline imaging results may be unusable if there is emission in the “off” position.

• The SD pipeline will not run correctly on multi-execution datasets in which some sources
are missing from some of the executions.

• When running scriptForPI.py scripts with versions of v1.19 or earlier, you may get an
error message of the form: “ERROR: uid___A002_XXXX_XXXX.PM*.ms was not
created.” This message can be ignored.

A list of pipeline “known issues” that arise after the publication date of this document is
maintained on the ALMA Science Portal at http://almascience.org/processing/science-
pipeline#KI. This list will be updated as issues are discovered during the cycle.

	

	

8	

3 Pipeline Versions & Documentation

3.1 Obtaining the Pipeline

A link to the version of CASA 4.7.2 that includes the ALMA pipeline is available, along with
installation instructions and supporting documentation, from the Science Pipeline section of the
ALMA Science Portal at http://www.almascience.org (under the “Processing” tab, or directly at
http://almascience.org/processing/science-pipeline). If any issues are encountered with CASA
4.7.2 installation, please contact the ALMA Helpdesk via the link on the ALMA Science Portal.

The pipeline tasks become availalble by starting up CASA using the command:

%casapy --pipeline

3.2 Pipeline-related Documentation

The User documentation currently relating to the Pipeline is also available from the from the
Science Pipeline section of the Science Portal referenced above. This includes:

• ALMA Science Pipeline User’s Guide: This document.

• ALMA Science Pipeline Reference Manual: Description of individual Pipeline tasks.

In addition, Chapter 13 of the ALMA Technical Handbook briefly describes ALMA pipeline
processing, and the ALMA QA2 Data Products document for Cycle 4 provides a description of
ALMA data deliveries, including pipeline products.

Finally, examples of common re-imaging modifications to the IF pipeline script are given at:
https://casaguides.nrao.edu/index.php/ALMA_Imaging_Pipeline_Reprocessing.

3.3 Pipeline & CASA Versions

The pipeline heuristic tasks have a specific version number, and are bundled with a specific
version of CASA. These versions are reported in the README file that is archived with the
pipeline data products, and are also reported on the Home page of the WebLog for each
pipeline-processed dataset (see Figure 9 for an example). For ALMA Cycle 4, the pipeline was
originally released with CASA 4.7.0 in October 2016, and the current “Cycle 4 patch” version
was released with CASA 4.7.2 in April 2017.

In general, the version of Pipeline+CASA used in ALMA Operations to calibrate and image the
archived data will be the same as the publicly posted pipeline version available from the
“Obtaining CASA” page, but they can be slightly different (e.g. for bugs that have an operational
workaround but which are fixed in the posted public version). There is a “Pipeline Version

Tracker” available from the Science Portal at http://almascience.org/processing/science-
pipeline#version, which lists the versions of CASA+Pipeline used in ALMA Operations as well as
the versions which should be used for any restoring or reprocessing of the data from the same
cycle (as described elsewhere in this document).

3.4 Pipeline and CASA tasks
The pipeline heurisitics are written as special CASA tasks, where they appear with a hif_ or
hifa_ (for interferometric) or hsd_ (for single-dish) prefix. They can be viewed and executed
within CASA in exactly the same way as other CASA tasks. For example, one can view the
possible inputs for the task hifa_importdata by typing inp hifa_importdata. To see all
the tasks available in CASA, type tasklist. The pipeline heuristics use CASA tasks wherever
possible to perform the data reduction or imaging. E.g. the pipeline bandpass calibration task

	

	

9	

hifa_bandpass calls the CASA bandpass tasks, and the interferometric imaging task
hif_makeimages calls the CASA imaging task tclean.

The standard pipeline recipes are deterministic and should always give the same result for the
same data. However, the CASA pipeline tasks are designed to be highly flexible, so that they
can have the default inputs over-ridden with user-specified values, or be added, subtracted, or
rearranged to produce alternative processing recipes. This enables a manual “mix and match”
mode for data reduction and imaging that combines standard CASA pipeline tasks with other
CASA commands or python code to produce scripts that are better tuned to the idiosyncrasies
of a specific dataset. Some common “manual mode” modifications are presented in the Sec. 6
below. A complete list of the variables for each pipeline task is given in the ALMA Science
Pipeline Reference Manual.

CASA pipeline tasks operate like other CASA tasks. In particular, the scope of variables follow
CASA rules. This means that when CASA pipeline tasks are called with no arguments, they will
assume any previously defined variables used by the task, whereas calling the same task with
at least one argument will not. For example, typing the commands “refant=’DA45’;
hifa_gfluxscale();” will use the antenna named ‘DA45’ as the reference antenna, whereas
typing “refant=’DA45’; hifa_gfluxscale(pipelinemode=’interactive’);” will
result in the pipeline picking a reference antenna according to its default heuristics.

This document, along with the Pipeline Reference Manual, describe key aspects of the CASA
pipeline tasks. Important changes to other CASA tasks are documented in the Release Notes
for the corresponding CASA release, available from the CASA page at
https://casa.nrao.edu/current_casa.shtml.

4 Data Processing Files

4.1 Archived scripts
There are several scripts that are archived with ALMA data deliveries. These are fully described
in the document ALMA QA2 Data Products for Cycle 3 available from ALMA Science Portal
under the “Processing” tab (or directly at https://almascience.nrao.edu/processing/qa2-data-
products). The particular scripts for a specific dataset will also be described in the README file
archived with the data products. This will vary based on how the data were processed (pipeline
calibrated + imaged; pipeline calibrated & manually imaged; manually calibrated + pipeline
imaged, manually calibrated + manually imaged).

The scripts produced by the pipeline are called casa_pipescript.py and, for data run through
the IF calibration pipeline, casa_piperestorescript.py. The former includes all pipeline
processing commands that were run on the data, and is more fully described below. The latter
“restores” the data, which means that rather than re-running the pipeline calibration commands,
it uses previously derived calibration and flagging tables and applies them directly to the raw
data, producing a calibrated measurement set. This is much quicker and requires less
computing resources than re-running the pipeline calibration commands. Currently, the restore
capability is only available for data run through the IF pipeline; a SD pipeline calibrated dataset
must be recreated by running the pipeline commands in the corresponding casa_pipescript.py.

Every delivery package includes a master script called scriptForPI.py that will reproduce the
calibrated data regardless of how it was processed. This script is not created by the pipeline, but
instead by the data packaging software so that it is produced for both pipeline and manually
reduced data. For IF pipeline calibrated data, it will simply invoke the pipeline-produced
casa_piperestorescript.py script. For SD pipelined data, it will invoke the corresponding

	

	

10	

casa_pipescript.py. Instructions for using scriptForPI.py are included in the README file
archived with each processed dataset, and in more detail in the document ALMA QA2 Data

Products for Cycle 3 referenced above.

Using scriptForPI.py is the recommended and fastest method of obtaining calibrated

ALMA data from the delivery. However, to change the calibration results, one would re-run the
commands in casa_pipescript.py after making modifications, as described in Sec. 5 below.

4.2 Pipeline “Helper” text files
Both the IF and SD pipeline use a number of text files that, if present, will affect the pipeline
results (e.g. by applying manually identified flags or by updating calibrator fluxes or antenna
positions before calculating the calibration tables). These files are particularly useful for users to
over-ride the default pipeline behavior when re-running the pipeline at home, as more fully
described in Sec. 6 below. They include the following:

• flux.csv: This file is used by the IF pipeline to update the flux of calibrators. The flux of
the calibrator with the “AMPLITUDE” intent will affect the overall flux scale of the data. If
this file is not present where the pipeline is run, the fluxes in the ASDM(s) will be used,
representing the best flux estimate at the time the SB was executed. If no flux value
appears in either the flux.csv file or the ASDM, a flux of 1.0 Jy is adopted.

• jyperk.csv: This file is used by the SD pipeline to set the “Jansky to Kelvin” calibration
factors which set the overall fluxscale of the data. If it is not present where the pipeline is
run, then a conversion factor of unity is assumed.

• antennapos.csv: This file is used by the IF pipeline to update the positions of the
antenna elements. If it is not present where the pipeline is run, the positions in the
ASDM(s) will be used.

• uid*flagtemplate.txt: This file is used to add additional CASA flagging commands that
will be applied to the data before the calibration tables are calculated.

• uid*flagtargetstemplate.txt: This file is used to add additional CASA flagging
commands that will be applied to the data after the calibration tables are calculated, but
before science target imaging is performed.

• cont.dat: This file is used to specify the continuum frequency ranges used for
constructing the continuum images and creating the continuum-subtracted cubes.

The format of each of these files is given in Sec. 6.

4.3 The Pipeline processing script: casa_pipescript.py

4.3.1 Format	of	casa_pipescript.py	
The complete set of pipeline commands are given in the script casa_pipescript.py. This is a
python script that includes all tasks and parameter values, in the correct sequence, that were
used for the pipeline run. A typical casa_pipescript.py script for a SD Pipeline run (incuding
both calibration+imaging steps) is shown in Figure	 1, while a typical IF pipeline script that
includes both pipeline calibration and imaging steps is shown in Figure	2.

For data that were both calibrated and imaged in the pipeline (including all SD data run through
the pipeline), the casa_pipescript.py file will include both the calibration and imaging pipeline
commands. For IF data that were calibrated in the pipeline but imaged outside of the pipeline,
the casa_pipescript.py file will only include the IF calibration pipeline commands (up to the line
“# Start of pipeline imaging commands” line in Figure	 2), and the archived data will include a

	

	

11	

separate scriptForImaging.py script containing the manual (CASA) imaging commands. If
instead the IF data were manually calibrated and pipeline imaged, the scriptForPI.py would
include the manual (CASA) calibration commands, and the IF pipeline imaging commands
(those following the line “# Start of pipeline imaging commands” line in Figure	 2) would be
included in a separate scriptForImaging.py script.
__rethrow_casa_exceptions=True
h_init()

hsd_importdata(vis = ['uid___A002_X877e41_X452'])
hsd_flagdata(pipelinemode=’automatic’) ## Uses *flagtemplate.txt
hifa_tsyscal(pipelinemode=’automatic’)
hifa_tsysflag(fnm_byfield=True)
hsd_skycal(pipelinemode=’automatic’)
hsd_k2jycal(pipelinemode=’automatic’) ## Uses jyperk.csv
hsd_applycal(pipelinemode=’automatic’)
hsd_baseline(pipelinemode=’automatic’)
hsd_blflag(pipelinemode=’automatic’)
hsd_baseline(pipelinemode=’automatic’)
hsd_blflag(pipelinemode=’automatic’)
hsd_imaging(pipelinemode=’automatic’)

h_save()

Figure	1:	Example	of	the	Single	Dish	Pipeline	calibration	+	imaging	script	casa_pipescript.py.	The	“##”	comment	
line	identifies	the	pipeline	command	that	uses	one	of	the	pipeline	“helper”	text	files	described	in	Sec.	4.2.	

	

	

12	

.

__rethrow_casa_exceptions = True
h_init()
try:
 hifa_importdata(dbservice=False,
 vis=['uid___A002_X877e41_X452'], session=['session_1'])
 ## Uses flux.csv
 hifa_flagdata(pipelinemode="automatic")##Uses *flagtemplate.txt
 hifa_fluxcalflag(pipelinemode="automatic")
 hif_rawflagchans(pipelinemode="automatic")
 hif_refant(pipelinemode="automatic")
 hifa_tsyscal(pipelinemode="automatic")
 hifa_tsysflag(pipelinemode="automatic")
 hifa_antpos(pipelinemode="automatic") ## Uses antennapos.csv
 hifa_wvrgcalflag(pipelinemode="automatic")
 hif_lowgainflag(pipelinemode="automatic")
 hif_gainflag(pipelinemode="automatic")
 hif_setjy(pipelinemode="automatic")
 hifa_bandpass(pipelinemode="automatic")
 hifa_spwphaseup(pipelinemode="automatic")
 hifa_gfluxscale(pipelinemode="automatic")
 hifa_timegaincal(pipelinemode="automatic")
 hif_applycal(pipelinemode="automatic")
 hif_makeimlist(intent='PHASE,BANDPASS,CHECK')
 hif_makeimages(pipelinemode="automatic")
 hif_exportdata(pipelinemode="automatic")

Start of pipeline imaging commands
 hif_mstransform(pipelinemode="automatic")
 hifa_flagtargets(pipelinemode="automatic")
 ## Uses *flagtargetstemplate.txt
 hif_makeimlist(specmode='mfs') ## Uses cont.dat
 hif_findcont(pipelinemode="automatic") ## Modifies cont.dat
 hif_uvcontfit(pipelinemode="automatic") ## Uses cont.dat
 hif_uvcontsub(pipelinemode="automatic")
 hif_makeimages(pipelinemode="automatic")## Uses cont.dat
 hif_makeimlist(specmode='cont') ## Uses cont.dat
 hif_makeimages(pipelinemode="automatic")## Uses cont.dat
 hif_makeimlist(width='') ## Uses cont.dat
 hif_makeimages(pipelinemode="automatic")## Uses cont.dat

finally:
 h_save()
	

Figure	2:	Example	of	an	IF	Pipeline	casa_pipescript.py	script	for	a	dataset	that	was	run	through	the	Pipeline	for	
both	 calibration	 and	 imaging.	 The	 “##”	 comment	 lines	 identify	 the	 pipeline	 commands	 that	 uses	 one	 of	 the	
pipeline	“helper”	text	files	described	in	Sec.	4.2.

	

	

13	

The tasks names, order, and parameter values in the casa_pipescript.py script reflect the
processing recipe used for each individual delivery. Additionally, the pipelinemode parameter
is set to “automatic” for each task. In this mode, the task takes the default settings for each tasks
and only a limited number of parameters are exposed for editing by a user. Setting the pipeline
mode to “interactive” will usually enable the values of a larger number of parameters to be
changed. To see the variables available in the pipeline “automatic” mode, type
“pipelinemode=’automatic’; inp <task_name>” at the CASA command line. To see
the variables available in the pipeline “interactive” mode, type
“pipelinemode=’interactive’; inp <task_name>”. See the ALMA Science Pipeline

Reference Manual for more details, and Sec. 5 below for examples of modified pipeline re-runs.

4.3.2 Results	from	running	the	single	dish	casa_pipescript.py	
Running the script will create:

• A calibrated, baseline subtracted MS for each ASDM with a name like
uid___A00X_XXXX_XXX.ms_bl.

• Baseline subtracted image cubes of the the science targets in *.image format (1 per
spectral window, at the native correlator frequency spacing).

• A pipeline-*/html directory containing
o The Pipeline WebLog (see Sec. 9).
o The casa_commands.log file (see Sec. 4.4).

4.3.3 Results	from	running	the	interferometric	casa_pipescript.py	
Running the script through the first hif_makeimages command (calibrator imaging) will create:

• A calibrated MS for each ASDM with a name like uid___A00X_XXXX_XXX.ms. This ms
includes both calibrator and science data and all spectral windows, with the raw data in
the DATA column, and the calibrated continuum + line data in the CORRECTED column.

• Continuum images of the bandpass, phase, and (if present) check source calibrators (1
per spectral window, in *.image format). To view a *.image file e.g. use casaviewer
image_file_name.

• A pipeline-*/html directory containing:
o The Pipeline WebLog (see Sec. 8).
o The casa_commands.log file (see Sec. 4.4).

Running the script through hif_mstransform command will additionally create:

• A calibrated MS for each ASDM containing only science target data (only science targets
and spectral windows), with a name like uid___A00X_XXXX_XXX_target.ms. This ms
will have the raw data in the DATA column, and the calibrated continuum + line data in
the CORRECTED column.

Running the script through hif_uvcontsub command will result in:

• The science-target only MS (uid___A00X_XXXX_XXX_target.ms), now with the
calibrated continuum + line data in the DATA column, and the calibrated continuum
subtracted data in the CORRECTED column.

Running the script through the final hif_makeimages command (science target spectral line
imaging) will additionally create:

	

	

14	

• Per-spw continuum images, aggregate continuum images, and continuum subtracted
image cubes of at least some science targets (the number of targets may be reduced
either automatically – see Sec. 8.20 – or manually).

4.4 CASA equivalent commands file: casa_commands.log

The casa_commands.log file is written by the pipeline to provide a list of the equivalent CASA
task commands (as opposed to Pipeline tasks) used by the Pipeline to process a dataset. While
this log cannot be used to create a CASA reduction script that is identical to the Pipeline
processing, it provides executable CASA commands with the parameter settings used by the
pipeline. The log is commented to indicate which Pipeline stage the tasks were called from and
why. The imaging commands given in this file can be easily modified to produce new imaging
products with more finely tuned inputs (e.g. interactive masks and deeper cleaning thresholds).

5 Modifying a Pipeline Run using casa_pipescript.py

5.1 Pipeline re-processing considerations

As a rule, it does not make sense to rerun the casa_pipescript.py exactly as delivered, since
this will merely reproduce the calibrated measurement set (which for IF Pipeline calibrated data
is much more easily generated using scriptForPI.py to “restore” the calibration, as described in
Sec. 4.1 above) and/or already-delivered products. Instead, it is likely that the user may want to
redo the calibration after some modifications or produced modified imaging products. This
section describes a few of the more common calibration and imaging changes for both the IF
and SD Pipeline tasks. See the ALMA Science Pipeline Reference Manual for more complete
details on the pipeline tasks and their inputs.

Re-running the pipeline can be very resource-intensive, both from a compute-time and disk-
space perspective. For the compute time, an idea of how long the pipeline took when can be
inferred from the WebLog (using the Execution Duration shown on the top of the “Home” page
of the WebLog – see Figure	 9, or the Task Execution Statistics that are listed for each task in
the “By Task” part of the WebLog – see e.g. Figure	 13). Those times, however, reflect the run
times using the ALMA Operations processing clusters, which have 64 – 256 GB RAM.
Concerning disk space, to re-run SD or IF pipeline calibration, it is advisable to have a system
with at least 8 GB RAM, and 50 – 75 GB free disk space per ASDM. To re-run the IF imaging
pipeline, it is advisable to have a system with ≥64 GB RAM, and the available disk space needs
to be 10 – 100 times the expected size of the final imaging products.

The above resource requirements for the IF imaging pipeline are rather daunting. However, In
practice, it is unlikely that the imaging pipeline commands would need to be rerun in their
entirety. It would be much quicker and demand much less computing resources to only image
the sources and or spectral windows (spw) or channels of interest, at an appropriate spectral
resolution. This can be done by finding the corresponding tclean() command in the provided
casa_commands.log file, modifying it as desired, and running it in CASA. These commands
work on the measurement set created by the pipeline hif_mstransform() command, so that
part of the imaging script would need to be run first.

Please contact ALMA via the Helpdesk if assistance is needed with data reprocessing.

5.2 Preparing to run casa_pipescript.py

The following steps describe how to modify and re-run the Pipeline, starting from the products
and directory structure created after downloading the data (see the ALMA	 QA2	 Data	 Products	
document for details):

	

	

15	

• Copy casa_pipescript.py from the script directory to the raw directory.

• To re-run IF calibration: copy flux.csv, antennapos.csv (if present), and
uid*flagtemplate.txt from the calibration directory to the raw directory.

• To re-run IF imaging: copy uid*flagtargetstemplate.txt from the calibration directory to
the raw directory. Copy uid*cont.dat from the calibration directory to cont.dat in the
raw directory.

• To re-run SD calibration & imaging: copy jyperk.csv and uid*flagtemplate.txt from the
calibration directory to the raw directory.

In the raw directory:

• Make sure the naming of the raw ALMA data is consistent with those provided in the
script (e.g. if the data ends in .asdm.sdm then move to names which do not have this
suffix).

• Modify the pipeline “helper” files as desired (e.g. editing the *flagtemplate.txt file to add
any additional flags – see Sec. 6 for other options).

• Edit casa_pipescript.py to only include the pipeline steps you wish to repeat (e.g.
commenting out the findcont or imaging steps, which are very computationally
expensive).

• Start the version of CASA containing Pipeline using casapy --pipeline

You are now ready to run the script by typing execfile(‘casa_pipescript.py’).

Alternatively, you can sequentially execute individual commands from casa_pipescript.py,
stopping at any point to run other CASA commands (plotms, etc).

Note that to re-run the Pipeline multiple times, it is recommended to start each time from

a clean directory containing only the raw data, CASA “helper” text files, and the

casa_pipescript.py script.

5.3 Modifying Calibration Commands

The pipeline calibration commands can be modified to produce different results.

For instance, problematic datasets (ASDMs) can be excluded from the processing by editing the
“vis=” and “session=” lists in hifa_importdata or hsd_importdata tasks in the
casa_pipescript.py script.

As a second example, a user-specified prioritized reference antenna list can be specified via the
“refant” variable in calibration tasks, over-riding the pipeline reference antenna heuristics, by
switching to pipelinemode=’interactive’ and passing the desired refant list. E.g.

 hifa_bandpass(pipelinemode="interactive", refant=’DV06,DV07’)

See the Pipeline Reference Manual for more options.

Another use case is to keep the default pipeline commands, but to changes the values in the
Pipeline “helper” text files to e.g. change the flux scaling, or update antenna positions (see Sec.
6 for details). The new values will be used when casa_pipescript.py is executed.

5.4 Modifying IF Pipeline Imaging Commands
The pipeline imaging commands can be modified to produce different products. Typical reasons
for re-imaging include:

	

	

16	

• Imaging improvements to be gained from interactively generating emission specific clean
mask and cleaning more deeply. The Cycle 4 pipeline uses a generic clean mask, and a
conservative clean threshold (see Sec. 8.28 for specifics). Cases with moderate to
strong emission (or absorption) can significantly benefit from deeper clean with
interactive clean masking, with the most affected property being the integrated flux
density. For S/N greater than about 100, the images can also often be improved by self-
calibration coupled with deeper clean with manual clean masks.

• Non-optimal continuum ranges. The pipeline uses heuristics that attempt to identify
continuum channels over a very broad range of science target line properties.
Particularly for strong line forests (hot-cores) and occasionally for TDM continuum
projects the pipeline ranges can be non-optimal -- too much in the first case and too little
in the second.

Other science goal driven reprocessing needs may include:

• Desire to bin channels in the imaging stage to increase the S/N of cubes.

• Desire to use a different Briggs Robust image weighting than the default of robust=0.5
(smaller robust = smaller beam, poorer S/N; larger robust = larger beam, better S/N).

• Desire to uv-taper images to to increase the S/N for extended emission.

• Desire to use different continuum frequency ranges than determined by the pipeline, by
modifying the cont.dat file (Sec. 6.6).

Some re-imaging examples are given in a “CASA Guide” at
https://casaguides.nrao.edu/index.php/ALMA_Imaging_Pipeline_Reprocessing. There you will find
examples of the following:

• Making aggregate continuum image with all channels of all spectral windows.

• Redoing continuum subtractions with user-derived continuum ranges.

• Making a cube of subset of sources, spectral windows, with a different robust weight and
channel binning factor.

5.5 Manual imaging after running casa_pipescript.py

5.5.1 SD	Data	
After calibration with the script casa_pipescript.py, it is possible to re-image using the CASA
Single Dish task, sdimaging, with user-defined parameters. As mentioned earlier, the Single
Dish Pipeline creates a calibrated MS with a filename extension of “*.ms_bl” for each ASDM.
The sdimaging command will make images of all MS that are specified in the infiles
parameter. For other parameters in sdimaging, refer to the *casa_commands.log file.

Note that the images included in the delivery package have the native frequency resolution and
a cell size of one-ninth of the beam size, as recommended in the SD “CASA Guide”
(https://casaguides.nrao.edu/index.php/M100_Band3_SingleDish_4.5). If you want to change
the frequency resolution and cell size, we recommend that you import the delivered FITS data
cubes into CASA and regrid them using the CASA task imregrid.

It is also possible to revise the baseline subtraction using your prefered mask range instead of
the pipeline-defined range. We recommend doing this on the images using the CASA tasks
imcontsub or tsdbaseline during your own manual calibration (refer to the CASA Guides).

	

	

17	

5.5.2 IF	Data	
For IF data that are pipeline calibrated but manually imaged, the imaging commands will be
included in a separate scriptForImaging.py script, containing all the CASA commands used to
create the delivered products. In order to use this imaging script after using casa_pipescript.py

or scriptForPI.py to recalibrate, the science spectral windows must first be “split” out from the
calibrated measurement sets and the measurement sets output with a .split.cal suffix. To
perform the split, in CASA e.g.:

split('uid__A002_X89252c_X852.ms',

outputvis='uid__A002_X89252c_X852.ms.split.cal', spw='17,19,21,23')

The science spectral windows are specified in the Pipeline WebLog (Home > Observation
Summary > Measurement Set Name > Spectral Setup, in the ID column) or can be determined
using the CASA task listobs e.g. listobs(‘uid___A002_X89252c_X852.ms’), where the
results will be reported in the CASA logger.

If a script named scriptForFluxCalibration.py is present in the script directory, this must also
be executed prior to running scriptForImaging.py.

5.6 Manipulating the Pipeline Context

It is recommended to always run the Pipeline using python scripts. New Pipeline runs/scripts
need to be initialised using h_init in order to create an empty pipeline Context.

If the script is modified to only run a subset of the pipeline tasks, the Context should be saved
after the last task by using h_save. To resume the run, use h_resume to load the saved
Context before executing any pipeline tasks. See the ALMA Science Pipeline Reference

Manual for more information.

To use the Pipeline to calibrate a dataset but to e.g. insert a different bandpass table into the
processing, the following procedure should be followed:

• Run the pipeline until the end of the bandpass table creation task hifa_bandpass.
• View the calibration tables that Pipeline will use with hif_show_calstate.
• Export the calibration tables Pipeline uses to a file on disk using

hif_export_calstate.

• Edit the calstate file to replace the name of the Pipeline-created bandpass table with the
one it is wanted to use instead.

• Import the edited calstate file back to the Context using hif_import_calstate and
resume the processing.

6 Description of Pipeline “Helper” Text Files

As mentioned in Sec. 4.2, both the IF and SD pipeline use a number of text files that are read by
various pipeline tasks (as indicated in Figure	 1 & 2), and which affect the pipeline results (e.g. by
applying manually identified flags or by updating calibrator fluxes or antenna positions before
calculating the calibration tables). These files are particularly useful for users to over-ride the
default pipeline behavior when re-running the pipeline at home, as described in the following
section. Below we describe all of the currently available control files, identifying whether they are
used by the IF pipeline, SD pipeline, or both in the subsection heading.

	

	

18	

6.1 IF Pipeline: flux.csv

From Cycle 4 onward, the fluxes of standard ALMA quasar calibrators at the observed
frequencies for each spw are written into the ASDM, using extrapolated values calculated from
entries in the ALMA Source Catalog available at the time of execution. These fluxes are
sometimes updated subequently (thereby bracketing the observation in time), allowing for more
accurate interpolated fluxes to be used for the absolute flux calibration.

Since the pipeline is usually run days to weeks after an observation, ALMA staff run commands
outside of the pipeline to get the best-available fluxes for standard calibrators at the time the
pipeline is run (in a future release, this query will be done automatically by the pipeline). These
are written into the flux.csv text file, which is then read in by the pipeline hifa_importdata
task (if it exists in the directory where the pipeline is run) and used to over-ride the values in the
ASDM. The new flux value of the flux calibrator (the source with intent=AMPLITUDE) is then
used in the subsequent hif_setjy task. Values for the other calibrator intents (BANDPASS,
PHASE, CHECK) are also updated, but these values are only shown for comparison against the
values derived from the pipeline calibration calibration (both are shown in a table in the
hifa_gfluxscale stage of the WebLog – see Sec. 8.15). If the flux.csv file is not available
where the pipeline is run, then the values entered into the ASDM by the online system are used.
If flux.csv file is not available where the pipeline is run and there are no values entered by the
online system, then a flux of 1 Jy will be assumed.

The format of the flux.csv file is shown in Figure	 3 below. It contains one row for every spw of
every calibrator (intents of AMPLITUDE, BANDPASS, PHASE or CHECK) in every ASDM in
the MOUS. This file can be edited by users and the pipeline re-run in order to scale the fluxes of
each ASDMs to a different value for the AMPLITUDE calibrator. Changing the values of other
calibrators will not have an effect on the calibration.

Ms,field,spw,I,Q,U,V,spix,comment
uid___A002_Xbb63ba_X1626.ms,0,19,0.9507,0.0,0.0,0.0,-0.308650436472,"J0519-4546
intent=AMPLITUDE,ATMOSPHERE,BANDPASS,POINTING,WVR # +-0.1252Jy, fre
q=226.113GHz, spec_index=-0.309+-0.031, Band3/7_separation=0 days, meanAge=1 days, setjy parameters for field 0 (J0519-4546):
spix=-0.3087, reffreq='226.1127GHz', fluxdensity=[0.950651,0,0,0], au.getALMAFluxcsv v1.3454 executed on 2017-02-02 19:05:02 UT"
uid___A002_Xbb63ba_X1626.ms,0,21,0.9527,0.0,0.0,0.0,-0.308650436472,"J0519-4546
intent=AMPLITUDE,ATMOSPHERE,BANDPASS,POINTING,WVR # +-0.1242Jy, freq=224.561GHz"
uid___A002_Xbb63ba_X1626.ms,1,19,0.580241916331,0.0,0.0,0.0,0.0,"J0550-5732 intent=ATMOSPHERE,PHASE,WVR"
uid___A002_Xbb63ba_X1626.ms,1,21,0.583046038078,0.0,0.0,0.0,0.0,"J0550-5732 intent=ATMOSPHERE,PHASE,WVR"
uid___A002_Xbb63ba_X18b0.ms,0,19,0.897297453643,0.0,0.0,0.0,0.0,"J0519-4546 intent=AMPLITUDE,ATMOSPHERE,BANDPASS,POINTING,WVR"
uid___A002_Xbb63ba_X18b0.ms,0,21,0.899465684438,0.0,0.0,0.0,0.0,"J0519-4546 intent=AMPLITUDE,ATMOSPHERE,BANDPASS,POINTING,WVR"
uid___A002_Xbb63ba_X18b0.ms,1,19,0.580241986645,0.0,0.0,0.0,0.0,"J0550-5732 intent=ATMOSPHERE,PHASE,WVR"
uid___A002_Xbb63ba_X18b0.ms,1,21,0.583046108732,0.0,0.0,0.0,0.0,"J0550-5732 intent=ATMOSPHERE,PHASE,WVR"

Figure	3:	Example	of	a	flux.csv	file	used	by	the	interferometric	pipeline	(one	per	MOUS)	

6.2 SD Pipeline: jyperk.csv

ALMA single-dish observations do not include observations of absolute amplitude calibrators.
Instead, the observatory conducts regular observations of standard single-dish calibrators and
stores them in an observatory database. When the single-dish pipeline is run, ALMA staff run
commands outside the pipeline to extract the best value of these “Jansky to Kelvin” calibration
factors, based on the observing date, frequency, Tsys, and source elevation. The appropriate
values are written into a the jyperk.csv text file that is read and applied when the
hsd_k2jycal task is run.

The format of the jyperk.csv file is shown in Figure	 4 below. It contains one row for every spw in
every ASDM in the MOUS. This file can be edited by users and the pipeline re-run in order to
scale the fluxes of each ASDM to a different value.

	

	

19	

Figure	4:	Example	of	a	jyperk.csv	file	used	by	the	single-dish	pipeline	(one	per	MOUS)	

6.3 IF Pipeline: antennapos.csv
The position of every antenna in an interfermetric observation must be known in order to
properly transfer the calibration from the phase calibrator to the science targets. If these
positions have errors, it will lead to phase errors in the imaging of the science target (increasing
with telescope position error and separation between the phase calibrator and science target).

The antenna positions are calculated by special observatory observations taken outside of PI
science observing, and the positions stored in an observatory database. This database is
queried at the time at the time of an SB execution, and the approriate antenna positions are
written into the ASDM. These positions are sometimes updated subequently, especially if the
observation happened close to an array reconfiguration or if an array element was recently
moved.

Since the pipeline is usually run days to weeks after an observation, ALMA staff run commands
outside of the pipeline to get the best-available antenna positions at the time the pipeline is run
(in a future release, this query will be done automatically by the pipeline). These are written into
the antennapos.csv text file, which is then read in by the pipeline hifa_antpos task (if it
exists in the directory where the pipeline is run) and used to over-ride the values in the ASDM.

The format of the antennapos.csv file is shown in Figure	 5 below. It contains one row for every
antennae every ASDM in the MOUS. This file can be edited by users and the pipeline re-run in
order to correct antenna position errors.

MS,Antenna,Spwid,Polarization,Factor
uid___A002_Xb1d975_Xf65.ms,PM02,17,I,43.785
uid___A002_Xb1d975_Xf65.ms,PM02,19,I,43.782
uid___A002_Xb1d975_Xf65.ms,PM02,21,I,43.664
uid___A002_Xb1d975_Xf65.ms,PM02,23,I,43.63
uid___A002_Xb1d975_Xf65.ms,PM02,25,I,43.638
uid___A002_Xb1d975_Xf65.ms,PM02,27,I,43.64
uid___A002_Xb1d975_Xf65.ms,PM02,29,I,43.641
uid___A002_Xb1d975_Xf65.ms,PM04,17,I,43.785
uid___A002_Xb1d975_Xf65.ms,PM04,19,I,43.782
uid___A002_Xb1d975_Xf65.ms,PM04,21,I,43.664
uid___A002_Xb1d975_Xf65.ms,PM04,23,I,43.63
uid___A002_Xb1d975_Xf65.ms,PM04,25,I,43.638
uid___A002_Xb1d975_Xf65.ms,PM04,27,I,43.64
uid___A002_Xb1d975_Xf65.ms,PM04,29,I,43.641
uid___A002_Xb1cc39_X1e46.ms,PM02,17,I,43.782
uid___A002_Xb1cc39_X1e46.ms,PM02,19,I,43.778
uid___A002_Xb1cc39_X1e46.ms,PM02,21,I,43.661
uid___A002_Xb1cc39_X1e46.ms,PM02,23,I,43.627
uid___A002_Xb1cc39_X1e46.ms,PM02,25,I,43.635
uid___A002_Xb1cc39_X1e46.ms,PM02,27,I,43.636
uid___A002_Xb1cc39_X1e46.ms,PM02,29,I,43.638
uid___A002_Xb1cc39_X1e46.ms,PM04,17,I,43.782
uid___A002_Xb1cc39_X1e46.ms,PM04,19,I,43.778
uid___A002_Xb1cc39_X1e46.ms,PM04,21,I,43.661
uid___A002_Xb1cc39_X1e46.ms,PM04,23,I,43.627
uid___A002_Xb1cc39_X1e46.ms,PM04,25,I,43.635
uid___A002_Xb1cc39_X1e46.ms,PM04,27,I,43.636
uid___A002_Xb1cc39_X1e46.ms,PM04,29,I,43.638

	

	

20	

name,antenna,xoff,yoff,zoff,comment
uid___A002_Xbb63ba_X18b0.ms,DA42,1.27536e-04,-3.54105e-04,-2.38014e-04,
uid___A002_Xbb63ba_X18b0.ms,DA46,1.98098e-04,-5.34528e-04,-3.65393e-04,
uid___A002_Xbb63ba_X18b0.ms,DA49,1.69321e-04,-2.81896e-04,-1.76309e-04,
uid___A002_Xbb63ba_X18b0.ms,DA52,-4.06882e-05,3.45109e-04,3.15047e-04,
uid___A002_Xbb63ba_X18b0.ms,DA62,-1.79249e-04,2.50696e-04,7.12701e-05,
uid___A002_Xbb63ba_X18b0.ms,DV03,-3.92453e-04,2.85912e-04,3.14499e-04,
uid___A002_Xbb63ba_X18b0.ms,DV08,-2.76083e-04,7.41071e-04,1.87197e-04,
uid___A002_Xbb63ba_X18b0.ms,DV14,-5.41156e-05,2.61746e-04,3.44329e-04,
uid___A002_Xbb63ba_X18b0.ms,DV15,-1.21313e-04,3.67910e-04,1.49062e-04,
uid___A002_Xbb63ba_X18b0.ms,DV23,1.73257e-04,1.36402e-04,-1.23099e-04,
uid___A002_Xbb63ba_X18b0.ms,DV25,3.12879e-03,-5.08802e-03,-2.87630e-03,
uid___A002_Xbb63ba_X18b0.ms,PM03,1.78948e-04,-5.00918e-04,-2.14580e-04,
uid___A002_Xbb63ba_X1626.ms,DA42,1.27536e-04,-3.54105e-04,-2.38014e-04,
uid___A002_Xbb63ba_X1626.ms,DA46,1.98098e-04,-5.34528e-04,-3.65393e-04,
uid___A002_Xbb63ba_X1626.ms,DA49,1.69321e-04,-2.81896e-04,-1.76309e-04,
uid___A002_Xbb63ba_X1626.ms,DA52,-4.06882e-05,3.45109e-04,3.15047e-04,
...

Figure	5:	Example	of	a	antennapos.csv	file	used	by	the	interferometric	pipeline	(one	per	MOUS)	

6.4 Both IF & SD Pipeline: uid*flagtemplate.txt
The pipeline flagging heuristics may prove inadequate, and users may wish to add additional
flagging commands to exclude these data from the calibration. These manually-identified flags
can be introduced to any Pipeline reduction by editing the uid*flagtemplate.txt files that are
provided with the archived pipeline products and rerunning the pipeline calibration steps. There
should be one file for every MS that needs additional flagging, with a name matching the MS
uid. The flag commands can be any valid CASA flagdata command. For interferometic data,
use the <AntID> syntax to flag only cross-correlation data for <AntID>, while for single dish data
use the “<AntID>&&*” syntax to flag both cross- and auto-correlation data for <AntID>, and the
“<AntID>&&&” syntax to flag auto-correlation data for <AntID>. Examples of the syntax to use in
editing these files are given at the top of the files uid*flagtemplate.txt (see Figure	6).

These flag files will be picked up by the hifa_flagdata/hsd_flagdata tasks which are run
before the calibration tasks, therefore excluding the manually identified data from being used to
generate the calibration tables.

User flagging commands file for the calibration pipeline

Examples
Note: Do not put spaces inside the reason string !

mode='manual' correlation='YY' antenna='DV01;DV08;DA43;DA48&DV23' spw='21:1920~2880' autocorr=False
reason='bad_channels'
mode='manual' spw='25:0~3;122~127' reason='stage8_2'
mode='manual' antenna='DV07' timerange='2013/01/31/08:09:55.248~2013/01/31/08:10:01.296' reason='quack'

mode='manual' timerange='2016/12/05/03:55:30.1440' reason='applycal_outlier_amp'
mode=’manual’ antenna=’PM02&&&’ reason=’PRTSIR2995’

Figure	6:	Example	of	a	uid*flagtemplate.text	file	used	by	both	the	interferometric	and	single-dish	pipeline	(one	
per	ASDM)	

6.5 IF Imaging Pipeline: uid*flagtargetstemplate.txt
Currently, there are no science target specific flagging heuristics in the IF pipeline, so errant
data may be present, affecting the science imaging products. Users should examine the science
data (e.g. using the CASA task plotms, or examing at the MS using the CASA viewer). If bad

	

	

21	

data are found, flagging commands can be added to the uid*flagtargetstemplate.txt files that
are provided with the archived pipeline products to exclude these data from subsequent
imaging. There should be one file for every MS that needs additional flagging, with a name
matching the MS uid. As for the uid*flagtemplate.txt files, the flag commands can be any valid
CASA flagdata command. If these files are found in the directory where the pipeline is run,
they will be picked up by the hifa_flagtargets task and applied to the data before science
target imaging.

6.6 IF Imaging Pipeline: cont.dat
The pipeline-identified continuum frequency ranges, in LSRK units, for each spectral window of
each source are entered into a file called cont.dat that is delivered with the pipeline products.
This file lists the LSRK frequency ranges that were used to make the per-spw and aggregate
continuum images, and for fitting and subtracting the continuum for the image cubes. When this
file is in the directory where the pipeline is (re)run, the pipeline will use these entries directly
instead of using its own heuristics (via the hif_findcont task) to determine them. Therefore,
a user can edit this file (or create their own) in order to use a different continuum range.
Alternatively, a user-defined file name can be passed as an argument to the hif_makeimlist
task. An example cont.dat file is shown in Figure	7.

Field: G09_0850-0019
SpectralWindow: 17
NONE

SpectralWindow: 19
337.659971874~339.253995016GHz LSRK

SpectralWindow: 21

SpectralWindow: 25
349.755169752~351.067897111GHz LSRK
351.271057297~351.380451244GHz LSRK

Figure	7:	Example	of	a	cont.dat	file	used	by	the	interferometric	pipeline	(one	per	MOUS).	This	example	is	for	an	
MOUS	that	has	5	spectral	windows;	the	entry	for	spw	21	is	empty	and	spw	23	is	omitted,	which	will	result	in	the	
hif_findcont	command	determining	the	frequency	ranges	for	these	spectral	windows.		

The behavior of hif_findcont and the subsequent continuum subtraction and continuum and
line imaging commands is as follows:

• If the spw line is followed by one or more frequency ranges, hif_findcont will not run
its heuristics on the spw. The task hif_uvcontfit will use these frequency ranges to
fit and subtract the continuum from this spw. Subsequent continuum images will include
only these frequency ranges for this spw, and the spw line cubes will be made from the
continuum subtracted data.

• If the spw line is followed by a line containing “NONE”, hif_findcont will not run its
heuristics on the spw (if the delivered cont.dat file contains spw entries with “NONE”,
this indicates that the hif_findcont task failed to find any continuum frequency
ranges). The task hif_uvcontfit will skip fitting this spw. Subsequent continuum
images will include the full frequency range for this spw (logging a warning), and the spw
line cubes will have had no continuum subtraction performed.

	

	

22	

• If an spw is not followed by a frequency range or is missing from cont.dat when
hif_findcont is run, then it will try to find the frequency ranges, and these will be
used to make subsequent continuum images, and for continuum subtraction.

• If an spw is not followed by a frequency range is missing from cont.dat when
hif_uvcontfit is run, it will skip fitting this spw. Subsequent continuum images will
include the full frequency range for this spw (logging a warning), and the spw line cubes
will have had no continuum subtraction performed.

7 The Pipeline WebLog

This section gives overview of the Pipeline WebLog, which is a collection of webpages with
diagnostic messages, tables, figures, and “Quality Assurance" (QA) scores. It is reviewed, long
with the pipeline calibration and imaging products, as part of the ALMA Quality Assurance
process, but also provides important information to investigators on how the pipeline calibration
and imaging steps went.

The section describes common elements to the single dish and interferometic Pipeline
WebLogs. Subsequent sections present descriptions of the SD- or IF- specific “By Task” part of
the WebLog.

7.1 Overview

The WebLog is a set of html pages that give a summary of how the calibration of ALMA data
proceeded, of the imaging products, and provides diagnostic plots and Quality Assurance (QA)
scores. The WebLog will be in the qa directory of an ALMA delivery. To view the WebLog, untar
and unzip the file using e.g. tar zxvf *WebLog.tar.gz . This will provide a pipeline*/html
directory containing the WebLog, which can be viewed using a web browser e.g. firefox

index.html.

The WebLog provides both a quick overview of datasets and also gives methods for exploring
each pipeline stage in detail. Therefore most calibration pages of the WebLog will first give a
single “representative” view, with further links to a more detailed view of all the plots associated
with that calibration step. Some of these will have a “Plot command” link that provides the CASA
command to reproduce the plot (see Figure	 8). For some stages, the detailed plots can be filtered
by a combination of outlier, antenna and spectral window criteria. Where histograms are
displayed, in modern web browsers it is possible to draw boxes on multiple histograms to select
the plots associated with those data points. All pipeline stages are assigned QA score to give an
“at a glance” indication of any trouble points.

WebLog Quick Tips

• Any text written in blue, including headings, is a link to further information.
• To go straight to viewing calibrated science target plots, go to By Task >

hif_applycal and scroll down to the bottom.
• Histograms can have selector boxes drawn on them using the mouse.
• The CASA commands for re-creating many of the WebLog plots are provided.

	

	

23	

	
Figure	 8:	 Example	 of	WebLog	 plot	with	 a	 "Plot	 command"	 link	 (arrow)	 that	 provides	 the	 CASA	 command	 for	
reproducing	the	plot.

7.2 Navigation

To navigate the main pages of the WebLog, click on items given in the bar at the top of the
WebLog home page. Also use the Back button provided at the upper right on some of the
WebLog sub-pages. Avoid using “back/previous page” on your web browser (although this can
work on modern browsers). Throughout the WebLog, links are denoted by text written in blue
and it is usually possible to click on thumbnail plots to enlarge them.

7.3 Home Page

The first page in the WebLog gives an overview of the observations (proposal code, data codes,
PI, observation start and end time), a pipeline execution summary (pipeline & CASA versions,
link to the current pipeline documentation, pipeline run date and duration), and an Observation
Summary table. Clicking on the bar at the top of the home page (see Figure	 9) enables
navigation to By Topic or By Task.

	

	

24	

	
Figure	9:	WebLog	Home	Page.	The	Navigation	Bar	is	circled	in	red.	

The Observation Summary table lists all the measurement sets included in the pipeline
processing, grouped by observing “sessions”. Each measurement set is calibrated
independently by the pipeline. For data that have been run through the imaging stages of the
pipeline, two MS will be listed – the original one including all data and spectral windows, and a
target.ms containing only science target data. The table provides a quick overview of the ALMA
receiver band used, the number of antennas, the start/end date and time, the time spent on
source, the array minimum and maximum baseline length, the rms baseline length and the size
of that measurement set. To view the observational setup of each measurement set in more
detail, click on the name of it to go to its overview page.

7.3.1 Measurement	set	Overview	pages	
Clicking on the measurement set name in the Observational Summary table brings up the
Measurement set Overview page (Figure	 10). Each measurement set Overview page has a
number of tables: Observation Execution Time, Spatial Setup (includes mosaic pointings),
Antenna Setup, Spectral Setup and Sky Setup (includes elevation vs. time plot). For more
information on the tables titled in blue text, click on these links. There are additionally links to
Weather, PWV, Scans and Telescope Pointings (in the case of Single Dish observations)
information. Two thumbnail plots, which can be enlarged by clicking on them, show the
observation structure either as Field Source Intent vs Time or Field Source ID vs Time. To
view the CASA listobs output from the observation, click on Listobs Output.

	

	

25	

	
Figure	 10:	Measurement	 Set	 Overview	 Page.	 Click	 on	 the	 table	 headings	 in	 blue	 for	more	 information	 about	
each.

7.4 By Topic Summary Page

The By Topic summary page provides an overview of all Warnings and Errors triggered, a
Quality Assessment overview in Tasks by Topic and Flagging Summaries for the processing.

7.5 By Task Summary Page
The By Task summary page (Figure	 11) gives a list of all the pipeline stages performed on the
dataset. It is not displayed per measurement set as the Pipeline performs each step on every
measurement set sequentially before proceeding to the next step; e.g. it will import and register
all measurement sets with the Pipeline before proceeding to perform the ALMA deterministic
flagging step on each measurement set. The name of each step on the By Task page is a link to
more information. On the right hand side of the page are colored bars and scores that indicate
how well the Pipeline processing of that stage went. Green bars should indicate a fairly problem-
free dataset, while blue or red bars indicate less than perfect QA scores. Encircled symbols to
the left of each task name (“?”, “!” or “x”), indicate that there are informative QA messages on
the subtask pages.

	

	

26	

	
Figure	11:	By	Task	summary	view.	The	page	has	been	truncated	so	both	the	top	and	bottom	can	be	seen.	Each	
pipeline	stage	is	listed,	along	with	its	QA	score	(colored	bars	to	the	right),	and	links	to	the	CASA	logs	and	scripts.

7.5.1 CASA	logs	and	scripts	
At the bottom of the By Task summary page are links to the CASA logs and supporting files and
scripts. These include the complete CASA log file produced during the pipeline run, the pipeline
restoration scripts described in Sec. 4.1: casa_pipescript.py and casa_piperestorescript.py,
and the casa_commands.log file described in Sec. 4.4.

7.6 Task Pages
Each task has its own summary page that is accessed by clicking on the task name on the By

Task summary page or in the left navigation menu from other pages. The task pages provide
the outcome, or the representative outcome, of each Pipeline task executed. For a fast

assessment of the calibration results, go straight to the applycal page. At the top of the
page will be any Task Notification (see Figure	 12). These provide informative messages or
warnings generated from the QA scoring and should be reviewed carefully.

	

	

27	

	
Figure	12:	hifa_tsysflag	task	page,	showing	the	task	notifications	at	the	top,	and	diagnostic	plots	(Tsys	for	each	
spw	grouped	by	MS).	Further	down	on	the	page	are	flagging	summary	tables.	To	see	the	sub-page	for	this	task,	
click	on	the	measurement	set	name	in	blue	above	each	set	of	plots.	This	will	take	you	to	a	page	of	detailed	plots	
for		individual	MS/antenna/spectral	windows	(see	Figure	14	for	an	example).	

At the bottom of each task page are expandable sections for Pipeline QA, Input Parameters
and Task Execution Statistics, and links to the CASA log commands for the specific task. An
example is given in Figure	13.

	
Figure	 13:	 Bottom	 of	 the	 hifa_timegaincal	 page,	 showing	 the	 expanded	 Pipeline	 QA	 section,	 as	 well	 as	 the	
expandable	sections	for	Input	Parameters,	Task	Execution	Statistics	and	link	to	the	CASA	logs	for	this	stage.

	

	

28	

7.6.1 Task	sub-pages	and	plot	filtering		
Most sub-pages have further links in order to access a more detailed view of the outcome of
each task. These links are often labelled by the measurement set name. Some of these plots
can be filtered by entering one or more MS, antenna, or spectral window in the appropriate box.
Still others have histograms of various metrics than can be selected using the cursor in a drop-
and-drag sense to outline a range of histogram values and displays the plots for the
MS/antenna/spw combinations that are responsible for those histogram values. An example of
these subpages and plot filtering is given in Figure	 14 – Figure	 16 below, using the By Task >
hifa_tsysflag: Flag Tsys calibration pages.

	
Figure	14:	Unfiltered	view	of	the	hifa_tsysflag	sub-page.	The	page	is	arrived	at	by	clicking	on	the	measurement	
set	 link	from	the	hifa_tsysflag	task	page	(Figure	12).	Only	the	first	row	of	plots	are	shown;	many	more	appear	
below	(one	for	each	MS,	antenna,	spw	combination).	This	page	has	histograms	of	three	metric	scores	based	on	
the	median	Tsys	that	can	also	be	used	to	filter	the	plots	that	are	displayed.	

	

	

29	

	
Figure	15:	Same	as	Figure	14,	but	with	a	specific	MS,	Tsys	window,	and	antenna	filter	set.	The	corresponding	
plots	are	displayed	below,	and	their	metric	scores	are	shown	by	blue	shading	in	the	histogram	plots.	

	
Figure	16:		Same	as	Figure	14,	but	filtering	to	the	plot	of	interest	by	using	the	mouse	to	draw	a	grey	box	on	the	
highest	histogram	values	in	the	RMS	deviation	from	Average	Median	Tsys	histogram	plot	(upper	right).	To	clear	
the	grey	box	filters	on	the	histograms,	click	on	any	white	space	in	the	histograms.	

	

	

30	

7.7 WebLog Quality Assessment (QA) Scoring

Pipeline tasks have scores associated with them in order to quantify the quality of the dataset
and the calibration. The scores are between 0.0 and 1.0 and are colorized according to the
following table:

Score Color Comment
0.90-1.00 Green Standard/Good
0.66-0.90 Blue Below standard
0.33-0.66 Yellow Warning
0.00-0.33 Red Error

7.7.1 Interferometric	Pipeline	QA	Scores

Pipeline Task
Pipeline QA Scoring
Metric

Score

hifa_importdata Checking that the
required calibrators are
present

1.0 all present

0.1 subtracted for missing bandpass or flux
calibrator
1.0 subtracted for missing phase calibrator or
Tsys calibration
0.5 subtracted for existing processing history

hifa_flagdata Determining percentage
of incremental flagging

0 < score < 1 === 60% < fraction flagged < 5%"
(for 'online', 'shadow', 'qa0', 'before' and
'applycal') where "0 < score < 1 === HIGH% <
fraction flagged < LOW%" means
• Score is 0 if flag fraction is >= HIGH%
• Score is 1 if flag fraction is <= LOW%
Score is linearly interpolated between 0 and 1
for fractions between HIGH% and LOW%

hifa_fluxcalflag Determining percentage
of incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5; >50%: score=0.0

hif_rawflagchans Determining percentage
of data flagged due to
deviant channels in
rawdata

0% flagged: score=1.0;
100% flagged: score=0.0

hif_refant Determining if a
reference antenna
centrally located and not
flagged a lot

Sum of two scores. Score1: 1- [(distance from
array center) / (distance of furthest antenna
from array center)]
Score2: 1- [(#good visibilities)/max(# good
visibilities)]

hifa_tsysflag Determining percentage
of incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5; >50%: score=0.0

hifa_antpos Determining if antenna
positional corrections
were applied

1.0 if no corrections needed; 0.9 if one or more
antennas were corrected.

hifa_wvrgcalflag Checking phase RMS
improvement

0.0 if RMS(before)/RMS(after) < 1, 0.5 ... 1.0
for ratios between 1 and 2, and 1.0 for ratios >
2

hif_lowgainflag Determining percentage Additional 0%-5% flagging: score=1.0; flagging

	

	

31	

of incremental flagging 5%-50% => 1.0...0.5; >50%: score=0.0
hif_gainflag Determining percentage

of incremental flagging
Score 1: Additional 0%-5% flagging: score=1.0;
flagging 5%-50% => 1.0...0.5; >50%: score=0.0
Score 2: if a flagging view could be created
then 1.0, otherwise 0.0

hifa_bandpass Judging phase and
amplitude solution
flatness per antenna,
spectral window and
polarization (interim
measure, future scoring
will be based on data
with solutions applied)

two algorithms: Wiener entropy and derivative
deviation, and signal-to-noise ratio (scores:
Wiener entropy: error function with 1-sigma
deviation of 0.001 from 1.0; derivative
deviation: error function with 1-sigma deviation
of 0.03 for the outlier fraction; signal-to-noise
ratio: error function with 1-sigma deviation of
1.0 for the signal-to-noise ratio)

hifa_spwphaseup Determining fraction of
spectral windows without
phase solutions
transferred from other
windows

Score is the fraction of spectral windows for
which phase solutions are unmapped to
expected number of spectral windows

hifa_gfluxscale Determining SNR of
fitted flux values

Fitted flux values with SNR < 5.0 are assigned
a score of 0.0, SNR > 20.0 a score of 1.0, and
a linearly scaled value in between

hifa_timegaincal Determining X-Y / X2-X1
phase solution
deviations

Standard deviation of X-Y phase difference
converted to path length: 1.0 if lower than
4.25e-6 m, 0.0 if higher than 7.955e-2 m, with
an exponential decrease in between. Standard
deviation of X2-X1 phase differences of
subsequent integrations converted to path
length: 1.0 if lower than 3.08-e-5 m, 0.0 if
higher than 2.24e-2 m, with an exponential
decrease in between. NB: The high limits are
currently dummies. Determining their realistic
values is still under development.

hifa_applycal Determining percentage
of incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5, >50%: score=0.0

hif_makeimlist Determine if expected
targets/spw will be
imaged

1.0 when all objects with desired intent appear
in list for all science spw

hif_makeimages
(non-
checksource
calibrators &
science targets)

Determine if noise is
close to theoretical

Ratio of sensitivity measured in non-pbcor
image in a 0.3 – 0.2 PB annulus compared to
0.25 times clean threshold;
Score=1 when ratio is 1 or lower
Score=0 when ratio is 5 or higher

hif_makeimages
(Checksources)

Determine if phase
transfer worked for
checksource, by
checking for
decorrelation and
positional shift

Geometric mean of following two scores:
Score1=1.0 – abs[(catalog position – fitted
position)/beam size]
Score2=1.0-abs[gfluxscale flux – fitted image
flux)/gfluxscale flux]

hif_exportdata Determining Pipeline
products have been
exported

1.0 when files successfully exported

hif_mstransform Determine if proper files
were created

1.0 when target.ms files successfully created;
otherwise 0.0

hifa_flagtargets Determine if any target
flags were applied

1.0 when no flagging commands applied

	

	

32	

hif_findcont Determine if continuum
could be identified for all
spw

1.0 if continuum frequency ranges found for all
spw

hif_uvcontfit Determine if continuum
could be fit

1.0 if continuum fit table created

hif_uvcontsub Determine if continuum
could be subtracted

Always set = 1.0

7.7.2 Single-Dish	Pipeline	QA	scores	
Pipeline Task Pipeline QA Scoring

Metric
Score

hsd_importdata Checking that the required
calibrators are present

1.0 ATMOSPHERE intents are present

0.5 subtracted for existing processing history

0.5 subtracted for existing model data

1.0 one continuous observing session
1.0 all source coordinate are present

hsd_flagdata Determining percentage of
incremental flagging

0 < score < 1 === 60% < fraction flagged <
5%" (for 'online', 'shadow', 'qa0', 'before' and
'applycal')
where "0 < score < 1 === HIGH% < fraction
flagged < LOW%" means
• Score is 0 if flag fraction >= HIGH%
• Score is 1 if flag fraction <= LOW%

Score is linearly interpolated between 0 and 1
for fractions between HIGH% and LOW%

hsd_k2jycal Checking that all Kelvin-to-
Jy conversion factors are
provided

0.0 Missing Kelvin-to-Jy conversion factor for
some data

hsd_applycal Determining percentage of
incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5, >50%: score=0.0

hsd_baseline Checking that one or more
than one emission line is
detected by line-finder.

1.0 there is more than one emission line
detected in at least one spw.
0.0 No line is detected in all spw.

hsd_blflag Determining percentage of
incremental flagging per
source per spw.

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5, >50%: score=0.0

hsd_exportdata Checking that the required
files are exported

1.0 pipeline processing request file is
exported
1.0 pipeline WebLog file is exported
1.0 pipeline script file is exported
1.0 pipeline restore script file is exported
1.0 pipeline commands log file is exported
1.0 No missing final flag version files
1.0 No missing final apply commands files
1.0 No missing caltables files

	

	

	

33	

8 The “By task” WebLog for Interferometric Data
This section describes navigation of the Task sub-pages for each Interferometric Pipeline task
starting from the “By Task” tab. For a fuller description of each task, refer to ALMA Science

Pipeline Reference Manual.

8.1 hifa_importdata
In this task, ASDMs are imported into measurement sets, Binary Data Flags are applied, and
some properties of those MSs are calculated. The WebLog page shows a summary of imported
MSs, and flux densities of calibrators. Flux densities are read from the Source table of the
ASDM, which is recorded by the online system at the time of observation by interpolating in
frequency the recent measurements in the calibrator catalog (see Appendix C of the ALMA C4
Technical Handbook). The flux densities for each calibrator in each science spw in each MS are
written to the file flux.csv in the calibration/ subdirectory of a data delivery package. The values
in this file can be edited before continuing with the pipeline execution if you first use the
importonly option of eppr.executeppr.

8.2 hifa_flagdata

In this task, the online (XML format) flags, which includes the QA0 flags for antenna pointing
calibration failures, are applied along with the rest of the deterministic flagging reasons
(unwanted intents, autocorrelations, shadowed antennas, and TDM edge channels). The
WebLog page shows the percentage of flagged data per MS. The “Before Task” column
contains only the effect of the Binary Data Flags (BDF) applied during hifa_importdata. The
additional flags are applied in the order of columns shown in the table. The percentage in each
column reflects the additional amount of data flagged when applying this flag reason. The QA
score for this stage is based on BDF+QA0+online+template+shadow flagging.

8.3 hifa_fluxcalflag

The WebLog shows any flagging or spwmap that was required. If the flux calibrator is a solar
system object, known lines in the object (e.g. CO in Titan’s atmosphere) are flagged by this
task. If more than 75% of a given spw is flagged on the flux calibrator for this reason, then a
spwmap is calculated to transfer the flux scale from another spw. The WebLog shows if any
flagging or spwmap was required.

8.4 hif_rawflagchans
This task was designed to detect severe baseline-based anomalies prior to performing antenna-
based calibration. These bad data are often due to hardware problems during the observation.
Outlier channels and outlier baselines are detected in the uncalibrated visibilities of the
bandpass calibrator.

The WebLog page links to the images of the values used for flagging. Any flagged data are
shown on the plots along with a summary of all flagging performed in this task. The following
two rules are used to evaluate the need for flagging:

1) "bad quadrant" matrix flagging rule:

This starts with the "baseline" vs. "channel" flagging view. In this view, some data points may
already be flagged, e.g. due to an earlier pipeline stage.

First, outliers are identified as those data points in the flagging view whose value deviates
from the median value of all non-flagged data points by a threshold factor times the median

	

	

34	

absolute deviation (MAD) of the values of all non-flagged data points, where the threshold is
'fbq_hilo_limit' (default: 8.0).

In formula: flagging mask = (data - median(all non-flagged data)) > (MAD(all non-flagged

data) * fbq_hilo_limit)

Next, the flagging view is considered as split up in 4 quadrants of channels (since some
problems manifest in only one or more quadrants), and each antenna is evaluated
separately as follows:
a) Select baselines belonging to antenna and select channels belonging to quadrant.
b) Determine number of newly found outlier datapoints within selection.
c) Determine number of originally unflagged datapoints within selection.
d) Determine fraction of "number of newly found outliers" over "number of originally

unflagged datapoints".
e) If the latter fraction exceeds the fraction threshold 'fbq_antenna_frac_limit' (default: 0.2),

then a flagging command is generated that will flag all channels within the evaluated
quadrant for the evaluated antenna.

f) Otherwise, no action is taken (i.e. the newly found outlier datapoints are not individually
flagged by this rule),

Next, the flagging view is still considered as split up in 4 quadrants of channels, and each
baseline is evaluated separately, as follows:
a) Select baseline and select channels belonging to quadrant.
b) Determine number of newly found outlier datapoints within selection.
c) Determine number of originally unflagged datapoints within selection.
d) Determine fraction of "number of newly found outliers" over "number of originally

unflagged datapoints".
e) If the latter fraction exceeds the fraction threshold 'fbq_baseline_frac_limit' (default: 1.0),

then a flagging command is generated that will flag all channels within the evaluated
quadrant for the evaluated baseline.

f) Otherwise, no action is taken (i.e. the newly found outlier datapoints are not individually
flagged by this rule).

2) "outlier" matrix flagging rule:

Data points in the flagging view are identified as outliers if their value deviates from the
median value of all non-flagged data points by a threshold factor times the median absolute
deviation of the values of all non-flagged data points, where the threshold is 'fhl_limit'
(default: 20.0).

In formula: flagging mask = (data - median(all non-flagged data)) > (MAD(all non-flagged

data) * fhl_limit)

Flagging commands are generated for each of the identified outlier data points.

If the number of data points in the flagging view are smaller than the minimum sample
'fhl_minsample' (default: 5), then no flagging is attempted.	

8.5 hif_refant

An ordered list of preferred reference antennas is calculated, with preference given to central
array location and low flagging fraction through the following score:

Refant score = [1-(normalized distance from center)] + [1-(normalized fraction of good data)]

The WebLog page shows that list, and the score for each antenna can be found in the casa log
for this stage.

	

	

35	

8.6 hifa_tsyscal

System temperature (Tsys) as a function of frequency is calculated from the atmospheric
calibration scan data by the online system at the time of observation. These spectra are
imported to a table of the MS during hifa_importdata. In hifa_tsyscal, these spectra are
copied into a CASA calibration table by the gencal task, which flags channels with zero or
negative Tsys. The WebLog shows the mapping of Tsys spectral windows to science spectral
windows, and plots Tsys before flagging.

8.7 hifa_tsysflag
This task flags the Tsys cal table created by the hifa_tsyscal pipeline task. Erroneous Tsys
measurements of several different kinds are detected, including anomalously high Tsys over an
entire spectral window, spikes or “birdies” in Tsys, and discrepant “shape” or Tsys as a function
of frequency. Details are provided in the WebLog for each kind of flagging performed, and all of
the Tsys spectra are plotted again. In these plots, all of the anomalies should be gone.

Tsysflag provides six separate flagging metrics, where each metric creates its own flagging view
and has its own corresponding flagging rule(s). In the current standard pipeline, all six metrics
are active, and evaluated in the order set by the parameter "metric_order" (default: 'nmedian,
derivative, edgechans, fieldshape, birdies, toomany').

1) Metric 1: "nmedian"

A separate view is generated for each polarisation and each spw. Each view is a matrix with
axes "time" vs. "antenna". Each point in the matrix is the median value of the Tsys spectrum
for that antenna/time.

The views are evaluated against the "nmedian" matrix flagging rule, where data points are
identified as outliers if their value is larger than a threshold-factor * median of all non-flagged
data points, where the threshold is 'fnm_limit' (default: 2.0).

Flagging commands are generated for each of the identified outlier data points.

2) Metric 2: "derivative"

A separate view is generated for each polarisation and each spw. Each view is a matrix with
axes "time" vs. "antenna". Each point in the matrix is calculated as follows:

o calculate "valid_data" as the channel-to-channel difference in Tsys for that
antenna/timestamp (for unflagged channels)

o calculate median(abs(valid_data - median(valid_data))) * 100.0

The views are evaluated against the "max abs" matrix flagging rule, where data points are
identified as outliers if their absolute value exceeds the threshold "fd_max_limit" (default: 5).

Flagging commands are generated for each of the identified outlier data points.

3) Metric 3: "edgechans"

A separate view is generated for each spw and each of these intents: ATMOSPHERE,
BANDPASS, and AMPLITUDE. Each view contains a "median" Tsys spectrum where for
each channel the value is calculated as the median value of all selected (spw,intent) Tsys
spectra in that channel (this combines data from all antennas together).

The views are evaluated against the "edges" vector flagging rule, which flags all channels
from the outmost edges (first and last channel) until the first channel for which the channel-
to-channel difference first falls below a threshold times the median channel-to-channel
difference, where the threshold is "fe_edge_limit" (default: 3.0).

	

	

36	

A single flagging command is generated for all channels newly identified as "edge channels".

4) Metric 4: "fieldshape"

A separate view is generated for each spw and each polarization. Each view is a matrix with
axes "time" vs. "antenna". Each point in the matrix is a measure of the difference of the Tsys
spectrum for that time/antenna from the median of all Tsys spectra for that antenna/spw in
the "reference" fields that belong to the reference intent specified by "ff_refintent" (default:
"BANDPASS").

The exact fieldshape value is calculated as: 100 * mean(abs(normalized tsys - reference
normalized tsys)), where a 'normalized' array is defined as: "array / median(array)"

The views are evaluated against the "max abs" matrix flagging rule, where data points are
identified as outliers if their absolute value exceeds the threshold "ff_max_limit" (default: 5).

5) Metric 5: "birdies"

A separate view is generated for each spw and each antenna. Each view contains a
"difference" Tsys spectrum calculated as:

"channel-by-channel median of Tsys spectra for antenna within spw" - "channel-by-

channel median of Tsys spectra for all antennas within spw".

The views are evaluated against the "sharps" vector flagging rule, which flags each view in
two passes:

a. flag all channels whose absolute difference in value to the following channel exceeds a
threshold "fb_sharps_limit" (default: 0.05).

b. around each newly flagged channel, flag neighboring channels until their channel-to-
channel difference falls below 2 times the median channel-to-channel difference (this is
intended to flag the wings of sharp features).

A single flagging command is generated for all channels newly identified as "birdies".

6) Metric 6: "toomany"

A separate view is generated for each polarisation and each spw. Each view is a matrix with
axes "time" vs. "antenna". Each point in the matrix is the median value of the Tsys spectrum
for that antenna/time. (This is the same as for "nmedian" metric).

The views are evaluated against two separate flagging rules:

a. "tmf" (too many flags): This evaluates each timestamp one-by-one, flagging an entire
timestamp when the fraction of flagged antennas within this timestamp exceeds the
threshold "tmf1_limit" (default: 0.666). Flagging commands are generated per timestamp.

b. "tmef" (too many entirely flagged): This evaluates all timestamps at once, flagging all
antennas for all timestamps within current view (spw, pol) when the fraction of antennas
that are entirely flagged in all timestamps exceeds the threshold "tmef1_limit" (default:
0.666). Flagging commands are generated for each data point in the view that is newly
flagged.

8.8 hifa_antpos
Sometimes the antenna positions were refined after the science data were recorded. If such
refinements have been located, they are applied in this task. The corrections are listed in the
WebLog, and the uvw values for the visibility data are recalculated.

	

	

37	

8.9 hifa_wvrgcalflag

Water Vapor Radiometer (WVR) power measurements are converted into a phase correction
table that can be applied to the science data. The phase rms during observation of the
bandpass calibrator, with and without the WVR correction, is used 1) to detect poorly performing
WVR units on individual antennas, and 2) to determine of the WVR correction helps overall.

The WebLog shows the effects of the phase correction in several ways, if any antennas’ WVR
data are flagged (the required phase correction is then interpolated from nearby antennas), and
also prints a warning of the correction is deemed not helpful enough to apply at all.

8.10 hif_lowgainflag

Antennas with persistently low amplitude gains are detected and flagged. The WebLog links to
grayscale images of the relative gain of each antenna calculated using the observation of the
bandpass calibrator, and shows if any antennas are flagged.	

This task first creates a bandpass caltable, then a gain phase caltable, and finally a gain
amplitude caltable. This final gain amplitude caltable is used to identify antennas with outlier
gains, for each spw. Flagging commands for outlier antennas (per spw) are applied to the entire
MS.	

A separate view is created for spw. Each view is a matrix with axes "time" vs. "antenna". Each
point in the matrix is the absolute gain amplitude for that antenna/timestamp.	

The views are evaluated against the "nmedian" matrix flagging rule, where data points are
identified as outliers if:	

a. Their value is smaller than a threshold-factor * median of all non-flagged data points,
where the threshold is 'fnm_lo_limit' (default: 0.7), or	

b. Their value is larger than a threshold-factor * median of all non-flagged data points,
where the threshold is 'fnm_hi_limit' (default: 1.3).	

Flagging commands are generated for each of the identified outlier data points.	

8.11 hif_gainflag

Antennas whose gain as a function of time shows anomalously high scatter are detected and
flagged. The WebLog links to grayscale images of the gain rms per antenna, showing any that
are flagged.	

This task first creates a phased-up bandpass caltable, then a gain phase caltable, and finally a
gain amplitude caltable. This final gain amplitude caltable is used to identify antennas with
outlier gains, for each spw. Flagging commands for outlier antennas (per spw) are applied to the
entire MS.	

Gainflag offers two separate flagging metrics, where each metric creates its own flagging view
and has its own corresponding flagging rule(s). In the Cycle 4 pipeline release, only the
"rmsdeviant" metric is active. This works as follows:

a. A separate view is created for each spw. Each view is a matrix with axes "time" vs.
"antenna". Each point in the matrix is the "standard deviation of the gain amplitudes
for that antenna and all timestamps, divided by the median absolute deviation of the
gain amplitude for all antennas and all timestamps".

b. The views are evaluated against the "max abs" matrix flagging rule, where data
points are identified as outliers if their absolute value exceeds the threshold
"frmsdev_limit" (default: 3.5).

	

	

38	

Flagging commands are generated for each of the identified outlier data points	

8.12 hif_setjy
The model flux density of the amplitude calibrator is set, either from an internal CASA model
(solar system objects), or the results of observatory calibrator monitoring (quasars) which
ultimately appear in the file flux.csv (see hifa_importdata). These flux densities are listed on
the WebLog page, along with plots of the amplitude calibrator as a function of uv distance
(which is useful to assess resolved solar system objects).	

8.13 hifa_bandpass
In this task, the bandpass calibrator is self-calibrated (phase only is first calibrated on as short a
time interval as allowed by signal-to-noise, listed on the WebLog page). The antenna-based
bandpass phase and amplitude solution is then calculated using a S/N-dependent frequency
interval, also listed on the WebLog page. Finally, the WebLog page links to plots of all of the
bandpass solutions, with the atmospheric transmission curve overlaid.

8.14 hifa_spwphaseup

The relative phase offsets between spectral windows are determined for each antenna using the
observation of the bandpass calibrator. (The offset is assumed to be constant in time during
each execution.) If narrow spectral windows are present, a mapping is determined so that the
calculated phase calibration as a function of time can be subsequently transferred (during
subsequent gaincal and applycal tasks) from wider, higher S/N spectral windows to the narrow
ones. If any such reference spwmaps are required, then they are listed on the WebLog page.

8.15 hifa_gfluxscale
In this task, the absolute flux scale is transferred from the amplitude calibrator to the other
calibrators and ultimately to the science target (via the phase calibrator). A phase-only self-
calibration is performed on all calibrators prior to this flux calculation.

The WebLog for this stage lists the derived flux densities of the non-amplitude calibrators
(usually phase and bandpass calibrators), along with the flux values extracted from the ALMA
Source Catalog. Plots of amplitude as a function of uv distance are shown, and If the absolute
flux calibrator is resolved (decreasing flux with increasing uv distance, usually only the case for
solar system objects), only data on short baselines are used to calculate the flux densities of the
secondary calibrators. Any such uv limits are listed in the table at the top of the WebLog page.

8.16 hifa_timegaincal

In this task, gain as a function of time is calculated from observations of the phase
calibrator. The WebLog page shows plots of this gain, both on a scan timescale (as will be
interpolated to the science target), and on an integration timescale (useful for assessing weather
and calibration quality).

8.17 hif_applycal

In this task, all previously calculated calibration tables are applied to the science data. Any
failed calibration solutions, and flagged Tsys scans, will result in flagging of actual science data
in this stage, so the WebLog shows a summary of that additional flagging, and high flagging will
result in a low QA score. The WebLog page also includes many useful plots of the calibrated
data as a function of time and frequency. Outliers in these plots can indicate any remaining bad
data.

	

	

39	

8.18 hif_makeimlist: Set-up parameters for calibrator images

This stage determines image parameters (image size, cell size, etc) to be used in the
subsequent hif_makeimages stage, and reports them on the WebLog page (See Figure	
17). The “specmode” can be mfs for per-spw continuum multi-frequency synthesis images,
“cont” for mfs continuum images of several spectral windows, or “cube” for spectral cubes. The
first time the task is run is in preparation for making per-spw mfs images of the calibrators.

	
Figure	 17:	 Example	 of	 the	 WebLog	 for	 the	 hif_makeimlist	 stage.	 This	 example	 is	 for	 setting	 up	 the	
parameters	for	calibrator	per-spw	mult-frequency	synthesis	(mfs)	continuum	images.

8.19 hif_makeimages: Make calibrator images
This stage actually creates the images requested by the most recent hif_makeimlist. The
first time it is run is to create per-spw mfs continuum images of the calibrators. See the
description in Sec. 8.28 for more information and examples of the hif_makeimages stage.
Low QA scores for non-Check source calibrators may indicate the need for additional flagging.

8.20 hif_checkproductsize: Mitigation to avoid overly long runs

One of the more significant new behaviors of the Cycle 4 “patch” version of the Pipeline is the
inclusion of an automated image size mitigation function, hif_checkproductsize, that is run
before the calibration hif_exportdata stage. This function will modify the characteristics of the
imaging products in order to decrease their size, thereby decreasing the time needed to make
them so that data can be delivered to PI’s more expediantly. Figure 18 shows an example
weblog page for a mitigated dataset. Datasets that have been mitigated will have imaging
products with different characteristics than those that have not been mitigated. Full imaging
products can be recreated by users, using the tclean commands that are in the
casa_commands.log file, or by calling the appropriate hif_makeimlist, hif_makeimages with the
defaults (which will make full imaging products without mitigations – be aware that this could
take many days to complete).

The mitigations are done in a priority order, with the mitigation halted once the predicted sizes
fall below the thresholds. For the Cycle 4 patch, the thresholds are: any individual cube with
MaxCubeSize greather than 30GB, or a total product with MaxProductSize greater than 400 GB.
The mitigation then proceeds according to the following logic:

	

	

40	

	
Figure	18:	Screenshot	of	new	hif_checkproductsize	stage	of	IF	Pipeline.	In	this	example,	the	cubes	for	spw25	had	to	be	binned	
by	a	factor	of	2,	and	the	FOV	was	limited	to	the	0.5	response	point	of	the	primary	beam	in	order	to	get	the	products	below	
the	default	thresholds.	Before	the	mitigation	the	maximum	cube	would	have	been	96GB;	after	the	mitigation,	it	is	predicted	
to	be	21.7	GB.		

1. Cube Size Check: Any cube estimated to be > MaxCubeSize?
1. If no, go to Product Size Check
2. If yes, recalculate max(estimated cube size) after each of the following modifications,

and go to Product Size Check when max(estimated cube size)<MaxCubeSize
1. Any spw≥3840? If so, binFactor=2 for those spw. If estimate still >

MaxCubeSize, then:
2. Any online unbinned spw=1920? If so, binFactor=2 for those spw. If estimate

still > MaxCubeSize, then:
3. For single pointing MOUS, if (estimate/ MaxCubeSize) < 1.4 then image out

to 0.3PB instead of 0.2PB (and change noise annulus correspondingly), else
image out to 0.5 PB (and change noise annulus correspondingly). If estimate
still > MaxCubeSize, then:

4. Use a cellsize of 3 pixel/beam instead of 5.
5. If estimate still > MaxCubeSize, produce “x” error for this stage with comment

“Error! Product size cannot be mitigated” & report remaining mitigation factor
needed. Exit at next hif_makimlist stage with error “Size mitigation had failed.

Will not create any clean targets”.
2. Product Size Check: recalculate total size given all previous steps. Is > MaxProductSize?

1. If no, then go on to imaging.
2. If yes, is [estimated product size after Step 1 / MaxProductSize] / N_sources > 1, if

yes, then:
3. Produce “x” error for this stage with comment “Error! Product size cannot be

mitigated” & report remaining mitigation factor needed. Exit at next hif_makimlist
stage with error “Size mitigation had failed. Will not create any clean targets”.

	

	

41	

4. Else, set science target image list to only image the first N=INT(MaxProductSize/
[estimated product size after Step 1 / N_sources]).

In the example shown in Figure 18, the initial data products were estimated to include a cube
that would be 96 GB. This triggered two mitigations: spectral window 25 was binned by a factor
of 2, and the FOV was restricted to the 0.5 response point of the Primary Beam. This was
sufficient to get the cube size down to 21.7 GB, so the mitigation cascade stopped. The total
product size after the cube mitigation is 52.1 GB, so products for all sources could be made.

8.21 hif_exportdata
Calibration tables, calibrator images (exported in fits format), and other products are moved from
the pipeline /working to the /products directory.

NOTE: The subsequent stages are only present if the imaging pipeline was run.

8.22 hif_mstransform
For each execution, calibrated visibilities for the science target(s) are split to a new MS with
“target.ms” in the name, as listed on the front WebLog page.

8.23 hifa_flagtargets
Flagging of the science target data, if determined to be necessary by an observatory scientist, is
performed as listed in the *flagtargetstemplate.txt files linked to the WebLog page. The
WebLog also shows a summary table of any flagging performed.

8.24 hif_makeimlist: Set-up parameters for target per-spw continuum
imaging

Imaging parameters are determined and listed for creation of per-spw mfs continuum images of
each science target. This run of hif_makeimlist also controls the parameters used to create
the dirty cubes used by the hif_findcont stage, including any channel binning (listed in the
“nbins” column of the hif_makeimlist table).

8.25 hif_findcont

In this task, dirty image cubes are created for each spectral window of each science target. The
cubes are made at the native channel resolution unless the nbins parameter was used in the
preceding hif_makeimlist stage. The signal as a function of frequency is determined and
plotted on the WebLog page as a spectrum (see examples in Figure	 19). This is not simply a
mean spectrum of the target, but rather a quantity that is more sensitive to spectral features. In
most cases, it is the mean spectrum above a S/N level that depends on the number of
channels. If no features are found, the spectrum is recomputed over the central area of the
cube in search of faint compact emission. An alternative algorithm (the per-channel peak /
MAD) is invoked in certain situations, including when significant atmospheric lines are present.
In either case, frequency ranges are calculated that are the least likely to contain any line
emission or absorption, and these are listed in the LSRK frame on the WebLog page, as well as
being indicated by the cyan colored horizontal line(s) on the spectra.

	

	

42	

	
Figure	19:	Two	examples	of	hif_findcont	plots,	one	with	the	entire	window	identified	as	continuum	(left),	
and	another	with	two	identified	continuum	regions	(right;	identified	continuum	indicated	by	cyan	lines).

The continuum frequency ranges are also printed to a file called “cont.dat”. If this file already
exists before hif_findcont is executed, then it will first examine the contents. For any spw
that already has frequency ranges defined in this file, it will not perform the analysis described
above in favor of the a priori ranges. For spws not listed in a pre-existing file, it will analyze
them as normal and update the file. In either case, the file cont.dat is used by the subsequent
hif_uvcontfit and hif_makeimages stages.

8.26 hif_uvcontfit
The previously determined continuum frequency ranges as shown in the cont.dat file are used
to fit the continuum of each visibility. The fit is performed for each spw independently using a
fitorder=1, and a calibration table is used to store the resulting fits called “uvcont.tbl”. The
WebLog for this stage reports the continuum ranges from hif_findcont in LSRK but
translated to the topocentric (TOPO) frame for each MS.

8.27 hif_uvsub
The hif_uvcontfit calibration table is applied to the data. After this step, the original
continuum + line emission is contained in the DATA column of the MS, while the continuum
subtracted data are written to the CORRECTED column.

8.28 hif_makeimages: Make target per-spw continuum images

Cleaned continuum images are created for each spectral window, each science target, using the
continuum frequency ranges determined from hif_findcont (as written in the cont.dat
file). For Cycle 4, the pipeline uses a generic clean mask corresponding to everything within the
0.3 response level of the primary beam, and a conservative clean threshold of 4 x (predicted
rms noise) x (dynamic range correction factor). The dynamic range correction factor accounts
for the fact that sources with a high dynamic range will have larger imaging artifacts, which
should not be cleaned. The artifacts are worse for poorer UV coverage, so different DR
corrections factors are adopted for 12-m Array and 7-m Array observations, according to the
following table:

	

	

43	

Source
Dynamic
Range

12-m Array DR
correction factor

Source
Dynamic
Range

7-m Array DR
correction
factor

≤ 20 1 ≤ 4 1
20 – 50 1.5 4 – 40 1.5

50 – 100 2 10 – 20 2
100 – 150 2.5 20 – 30 2.5

≥ 150 max (2.5, DR/150) ≥ 30 max (2.5, DR/30)

The resulting non-primary beam corrected images are displayed on the WebLog page. For each
image, the properties are shown next to the associated image png (see Figure	 20). In particular,
the following are reported: the center frequency, beam parameters (major and minor FWHM
resolution & position angle), theoretical sensitivity, cleaning threshold, dynamic range of the dirty
image (image peak to theoretical noise) and corresponding DR correction factor, the non-pbcor
image rms (the noise measured in the non-primary beam corrected image over an annulus
between the 0.3 to 0.2 response point of the primary beam), image max /min of the primary
beam corrected image, fractional bandwidth, aggregate bandwidth, and the image QA score
(meant to indicate how close the measured noise is to the theoretical noise, considering also the
DR correction factor – see Sec. 7.7.1).	

	
Figure	 20:	 Example	 of	 hif_makimages	 WebLog	 page	 for	 per-spw	 images.	 Clicking	 on	 the	 thumbnail	 will	
enlarge	the	image.	Clicking	on	the	“View	other	QA	images”	link	will	bring	up	the	detailed	image	page	(Figure	21).

The “View Other QA Images’ links for each image show the primary beam corrected image,
residual, clean mask (red area), dirty image, primary beam, psf, and clean model (Figure	21).

	

	

44	

	
Figure	 21:	 Details	 page	 that	 is	 displayed	 after	 clicking	 on	 the	 “View	 other	 QA	 images”	 link	 on	 the	
hif_makimages	WebLog	page.

8.29 hif_makeimlist: Set-up parameters for target aggregate
continuum images

Imaging parameters are calculated and listed for creation of an aggregate (all spectral windows
combined) continuum image (specmode=’cont’) of each science target.

8.30 hif_makeimages: Make target aggregate continuum images

A cleaned aggregate continuum image of each science target is formed from the
hif_findcont channels (as listed in the cont.dat file) is created. The aggregate continuum
image(s) are made with nterms=2 if the fractional bandwidth is ≥ 10% (only currently possible for
ALMA Bands 3 and 4 data). The resulting non-primary beam corrected images are displayed on
the WebLog page. The “View Other QA Images” links show the primary beam corrected image,
psf, clean model, dirty image, and residual image (Figure	21).

8.31 hif_makeimlist: Set-up image parameters for target cube imaging

Parameters are calculated and listed for creation of spectral cube images of each continuum-
subtracted spectral window of each science target.

8.32 hif_makeimages: Make target cubes

Cleaned continuum-subtracted cubes are created for each science target and spectral window
at the native channel resolution (unless channel binning has been selected using nbins in the
preceding hif_makeimlist) from the CORRECTED column. Cubes are made in the radio
LSRK frequency frame. Only channels that have not been designated as continuum channels

	

	

45	

are cleaned. The WebLog page displays non-primary beam corrected peak intensity images for
each cube (“moment 8”) along with properties of the cubes (see Figure	 22). The information is
similar to that described in Sec. 8.28 for continuum images, except that the noise is the median
rms over all channels (still measured in a 0.3 – 0.2 PB annulus), and instead of fractional and
aggregate bandwidth the “channel” information is given as the number of channels imaged times
the channel width. Recall that if no online or nbins (pipeline option) channel averaging is done,
the velocity resolution will be twice the channel width.

	
Figure	22:	Example	of	hif_makimages	WebLog	page	for	image	cubes.	

In addition to the “View other QA images” for continuum images demonstrated for Stage 27, an
additional plot is included for continuum subtracted cubes: an integrated intensity (“moment 0”)
image using the hif_findcont continuum frequency ranges (labeled “Line-free Moment 0”;
see Figure 23), which should be noise-like if the continuum subtraction worked well.

	
Figure	23:	Example	of	a	line-free	moment	0	map	shown	on	the	details	page	of	image	cubes.

8.33 hif_exportdata

Science target images are converted to fits format and copied to the /products subdirectory as
well as the cont.dat file from the hif_findcont stage. This stage is run in operations, but is
not included in the casa_pipescript.py script.

	

	

46	

9 The “By task” WebLog for Single-Dish Data

This section describes navigation of the Task sub-pages for each Single Dish Pipeline task
starting from the “By Task” tab. For a fuller description of each task, refer to the ALMA Science

Pipeline Reference Manual.

9.1 hsd_importdata
The WebLog for hsd_importdata task shows the summary of imported MSs, grouping of
spws to be reduced as a group1, and spw matching between Tsys and science spws. This task
also generates figures of Telescope Pointings, which are available in the MS Summary page
(i.e. from the Home page, click the MS name, and then click on “Telescope Pointing”). There are
two types of plots that can be found containing full information on all pointings and just on-
source pointings (Figure 24). In these plots, the red circle indicates the beam size of the
antennas and its location is the starting position of the raster scan. The Red (small) dot indicates
the last position of the raster. The green line represents the antenna slewing motion, and in the
right panel of Figure 24 the green line going to/from the red dot indicates that the antenna goes
to the last scan and returns to the OFF position. The grey dots indicate flagged data.

Figure	24:	The	detailed	page	of	Telescope	Pointing	in	the	MS	summary	page.	

9.2 hsd_flagdata
The WebLog for the hsd_flagdata task shows the summary of flagged data percentage per
MS due to binary data and online flagging, manually inserted file (*flagtemplate.txt),
shadowing, unwanted intents, and edge channels. Note that the value in the “Before Task”
column corresponds to the percentage of flagged data by binary data flagging.

9.3 hifa_tsyscal

This page shows the associations of Tsys and science spectral windows to be used for Tsys
(amplitude-scale) calibration, and also shows the original Tsys spectra per spectral window.

9.4 hifa_tsysflag
This page shows the flagged Tsys spectra per spectral window after heuristic flagging is applied.

																																																													
1	When several ASDMs are processed at once, the Pipeline needs to group their respective spws, based on spw
Name.	

	

	

47	

9.5 hsd_skycal

The WebLog shows the integrated OFF spectra per spw and per source. The y-axis is the direct
output from the correlator, which means the values are dominated by signals from both the
atmosphere and receivers (Figure 25). The different colors indicate different scans (times).

The time-averaged plots of the OFF spectra are also shown in this page for the purpose of
assessing the time variability of the spectra. The different colors here indicate different spws.
Note that the OFF spectrum is not averaged over the spectral windows yet, but it will be in the
future.

The coordinates of the OFF position can be confirmed in the Reference Coordinates table.

	

Figure	25:	An	example	of	OFF	spectrum	

9.6 hsd_k2jycal
This page shows the list of Kelvin to Jy conversion factors that Pipeline has read from a file
“jyperk.csv”, which shall contain the factors per spw, per antenna, and per polarization.

9.7 hsd_applycal

This page shows a list of the calibrated MSs with the name of the applied Tsys, Sky and
amplitude calibration (Kelvin to Jy conversion) tables, and also shows the integrated spectra
after calibration.

9.8 hsd_baseline

Spectral data before/after baseline subtraction

The hsd_baseline page of the WebLog show the grid of spectra before (top) and after
(bottom) baseline subtraction (Figure 26). The plots on the hsd_baseline summary page (just
after clicking the hsd_baseline link of the WebLog) show a representative spectral map for
each spw out of all maps in the detail pages (when you click the “Spectral Window” link below
the grid of spectra in the summary page). The detail page has similar plots but this time for each
ASDM, antenna, and polarization.

On the top panel of each grid of spectra, a spatially integrated spectrum per ASDM, antenna,
spw and polarization is shown. The magenta lines indicate the atmospheric transmission at each

	

	

48	

frequency. The cyan filled regions indicate the mask channels containing emission line that are
identified in the entire map, and red thick bars indicate the channels masked by a “deviation
mask” algorithm, designed to exclude atmospheric lines and lines at the band edge from the
baseline fit.

Below the top panel, there is a grid of spectra aligned along R.A./Decl. coordinates. Each small
panel shows one representative spectrum per grid cell (which sometimes we call “sparse profile
map”). The red (horizontal) line over-plotted on the spectrum indicates the fitted function to be
used for baseline subtraction for spectral data before baseline subtraction, while the zero-level
for spectral data after baseline subtraction.

Figure	26	An	example	of	the	summary	page	of	hsd_baseline.	

R.A. vs Dec. plots
There are four different plots per spw, i.e. “clustering_detection”, “clustering_validation”,
“clustering_smoothing”, and “clustering_final”. The number of plots in each figure is the same as
that of the candidate line components. The “cluster_detection” plot (Figure 27a) shows the grid
cells having emission line exceeding the threshold. In the plot, yellow grid cells show a region
where there is a single time-domain group with detected emission lines. Cyan squares indicate
grid cells where there are more than one time-domain groups with detected emission lines.

	

	

	

	

	

	

	

49	

	

	

	

Figure	27		Examples	of	(a)	clustering_detection,	(b)	clustering_validation,	and	(c)clustering_smoothing.

After line detection, the algorithm calculates how many spectra containing emission lines are
included in the grid cell in order to judge whether the grid cell possibly contains true emission
lines. At this line detection validation step, the ratio of the number of spectra having detected
emission lines (defined as “Nmember”) per grid cell and the number of total spectra belonging to
the grid cell (“Nspectra”) is calculated. The “clustering_validation” plot (Figure 27b) shows this
ratio for each grid cell, i.e., the grid cell is marked as:

• “Validated” if Nmember/Nspectra > 0.5 (Blue squares in Figure 27b)
• “Marginally validated” if Nmember/Nspectra > 0.3 (Cyan squares)
• “Questionable” if Nmember/Nspectra > 0.2 (Yellow squares)

After the validation step, the grid containing the Nmember/Nspectra rate per grid cell is
smoothed by a Gaussian-like grid function. This is to eliminate the isolated grid cells having a
single emission line candidate while enhancing the grid cells with detected emission line in
neighboring grid cells.

Figure 27c shows an example of “clustering_smoothing”. Blue squares represent the grid cells
with points exceeding the defined threshold, i.e., the grid cells having promising detections of
emission lines that are also found in the neighboring grid cells. Cyan and yellow squares are the
grid cells with points slightly below the threshold (Border), or lower than the threshold
(Questionable).

(a)						 	 					 																							(b)		 	 																										(c)	

	

	

50	

	

Figure	28	(a)	An	example	of	how	the	mask	range	is	calculated.	In	the	blue	squares,	the	mask	channel	range	is	the	
range	obtained	at	the	nearest	edge	of	any	validated	area	by	interpolation	mask	channel	ranges	in	the	validate	
grid	cells	(white-filled	red	circle).	(b)	An	example	of	clustering_final.	

As a final step, the mask region for each grid cell is determined. In the validated area after the
validation and the smoothing steps (blue squares in Figure 27c or green squares in Figure 28),
mask channel ranges are calculated over the spatial domain by inter/extrapolating the mask
ranges of the integrated spectra in the validated cells, and over each single non-integrated
spectrum. The mask channel range is determined and used in baseline subtraction in the green
and blue squares of Figure 28a. An example of “clustering_final” is shown in Figure 28b.

Line Center vs. Line Width plot

This plot shows the extent of each identified emission line candidate on the parameter space of
the line width versus the line center. The small dots indicate spectra containing identified
emission line. The red ovals show each clustering region with a size of the cluster radius.

Number of Clusters vs. Score plot

This plot shows the number of clusters and corresponding scores based on the cluster size
determined from the “line width” v.s. “line center” plot using clustering analysis (K-means
algorithm). The scoring is empirically defined so that the score gets better (smaller) when the
cluster size is smaller, the number of clusters is smaller, and the number of outliers is fewer than
those of other clusters. The users will know which number of clusters is more plausible by
searching for the number of clusters with a lower score. This plot is basically for developers.

9.9 hsd_blflag

The WebLog shows the list of flagged data percentage using five criteria that are explained in
the ALMA Pipeline Reference Manual. When you click on “details”, you will get the detailed
figures to evaluate these criteria as a function of rows (one row corresponds to a spectrum for
one integration). The flagged and unflagged data are shown in red and blue, respectively.

9.10 hsd_imaging	
Profile Map

Figure 29 shows the top of the summary page. Three types of profile maps are available in the
WebLog: 1) The simplified profile map of the combined image per spw at the top, 2) a simplified
profile map per antenna, and 3) a detailed profile map. In the simplified profile map, the magenta
lines indicate the atmospheric transmission at each frequency. One transmission profile is

(a)						 	 					 	 																												(b)	

	

	

51	

plotted for each ASDM processed. To access the simplified profile map per antenna, click the
corresponding “Spectral Window”. Each spectrum of the simplified profile maps (either 1. or 2.)
corresponds to an averaged spectrum in an area of ⅛ of the image size (imsize), so that the
total number of spectra in the profile map is 8 times 8. If the number of pixels (along x- or y-axis)
is less than eight, it shows all spectrum per pixel. To see the detailed profile maps, click the icon
with a symbol of polarization in the polarization column (see Figure 29). Each bin of the profile
map is equivalent to a pixel, but with an interval of three cells. Due to the limitation of the
allowed number of plots per page (max 5 x 5 plots per page), the rest of the plots are displayed
in other pages.

Figure	29	An	example	of	the	profile	map.		

Channel Map

The number of channel maps per spw corresponds to the number of emission lines that have
been identified by the clustering analysis. In each channel map (see Figure 30), the top-middle
plot shows the identified emission line and the determined line width (bracketed by two red
vertical lines), overplotted on the averaged flux spectrum (in Jy) as a function of frequency (in
GHz).

The top-left plot shows the zoom-up view of the identified emission line, but with velocity axis.
The vertical axis is the averaged flux in Jy and the horizontal axis is in units of km/s. The
(center) velocity of 0 km/s corresponds to the central frequency of the emission line, while the
velocity range is equivalent to the masked region where the emission line was identified. The
line velocity width is gridded into 15 bins, which are shown as red vertical lines.
The top-right plot shows the total integrated intensity map (in Jy/beam km/s) over the all
channels in the spw. Finally the channel maps within the velocity range of the identified emission
line are shown in the panel at the bottom. Each channel plot corresponds to a bin in the top-left
plot.

	

	

52	

Figure	30	An	example	of	channel	map.	

The Baseline RMS Map is created using the baseline RMS stored in the baseline tables. The
baseline RMS is calculated by hsd_baseline using emission free channels.

The Integrated Intensity Map for each spw is generated using immoments task with all the
available channel range.

	

